add
This commit is contained in:
parent
20db2afa7c
commit
955d8e61ed
|
|
@ -17,7 +17,7 @@ COPY pnpm-workspace.yaml ./
|
|||
# 首先复制 package.json, package-lock.json 和 pnpm-lock.yaml 文件
|
||||
COPY package*.json pnpm-lock.yaml* ./
|
||||
|
||||
COPY tsconfig.json .
|
||||
COPY tsconfig.base.json .
|
||||
# 利用 Docker 缓存机制,如果依赖没有改变则不会重新执行 pnpm install
|
||||
#100-500 5-40
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,107 @@
|
|||
# 基础镜像
|
||||
FROM node:20-alpine as base
|
||||
# 更改 apk 镜像源为阿里云
|
||||
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories
|
||||
# 设置 npm 镜像源
|
||||
RUN yarn config set registry https://registry.npmmirror.com
|
||||
|
||||
# 全局安装 pnpm 并设置其镜像源
|
||||
RUN yarn global add pnpm && pnpm config set registry https://registry.npmmirror.com
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
# 复制 pnpm workspace 配置文件
|
||||
COPY pnpm-workspace.yaml ./
|
||||
|
||||
# 首先复制 package.json, package-lock.json 和 pnpm-lock.yaml 文件
|
||||
COPY package*.json pnpm-lock.yaml* ./
|
||||
|
||||
COPY tsconfig.json .
|
||||
# 利用 Docker 缓存机制,如果依赖没有改变则不会重新执行 pnpm install
|
||||
#100-500 5-40
|
||||
|
||||
FROM base As server-build
|
||||
WORKDIR /app
|
||||
COPY packages/common /app/packages/common
|
||||
COPY apps/server /app/apps/server
|
||||
RUN pnpm install --filter server
|
||||
RUN pnpm install --filter common
|
||||
RUN pnpm --filter common generate && pnpm --filter common build:cjs
|
||||
RUN pnpm --filter server build
|
||||
|
||||
FROM base As server-prod-dep
|
||||
WORKDIR /app
|
||||
COPY packages/common /app/packages/common
|
||||
COPY apps/server /app/apps/server
|
||||
RUN pnpm install --filter common --prod
|
||||
RUN pnpm install --filter server --prod
|
||||
|
||||
|
||||
|
||||
FROM server-prod-dep as server
|
||||
WORKDIR /app
|
||||
ENV NODE_ENV production
|
||||
COPY --from=server-build /app/packages/common/dist ./packages/common/dist
|
||||
COPY --from=server-build /app/apps/server/dist ./apps/server/dist
|
||||
COPY apps/server/entrypoint.sh ./apps/server/entrypoint.sh
|
||||
|
||||
RUN chmod +x ./apps/server/entrypoint.sh
|
||||
RUN apk add --no-cache postgresql-client
|
||||
|
||||
|
||||
EXPOSE 3000
|
||||
|
||||
ENTRYPOINT [ "/app/apps/server/entrypoint.sh" ]
|
||||
|
||||
|
||||
|
||||
FROM base AS web-build
|
||||
# 复制其余文件到工作目录
|
||||
COPY . .
|
||||
RUN pnpm install
|
||||
RUN pnpm --filter web build
|
||||
|
||||
# 第二阶段,使用 nginx 提供服务
|
||||
FROM nginx:stable-alpine as web
|
||||
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories
|
||||
# 设置工作目录
|
||||
WORKDIR /usr/share/nginx/html
|
||||
# 设置环境变量
|
||||
ENV NODE_ENV production
|
||||
# 将构建的文件从上一阶段复制到当前镜像中
|
||||
COPY --from=web-build /app/apps/web/dist .
|
||||
# 删除默认的nginx配置文件并添加自定义配置
|
||||
RUN rm /etc/nginx/conf.d/default.conf
|
||||
COPY config/nginx/nginx.conf /etc/nginx/conf.d
|
||||
# 添加 entrypoint 脚本,并确保其可执行
|
||||
COPY config/nginx/entrypoint.sh /usr/bin/
|
||||
RUN chmod +x /usr/bin/entrypoint.sh
|
||||
# 安装 envsubst 以支持环境变量替换
|
||||
RUN apk add --no-cache gettext
|
||||
# 暴露 80 端口
|
||||
EXPOSE 80
|
||||
|
||||
CMD ["/usr/bin/entrypoint.sh"]
|
||||
|
||||
|
||||
# 使用 Nginx 的 Alpine 版本作为基础镜像
|
||||
FROM nginx:stable-alpine as nginx
|
||||
|
||||
# 替换 Alpine 的软件源为阿里云镜像
|
||||
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /usr/share/nginx/html
|
||||
|
||||
# 设置环境变量
|
||||
ENV NODE_ENV production
|
||||
|
||||
# 安装 envsubst 和 inotify-tools
|
||||
RUN apk add --no-cache gettext inotify-tools
|
||||
|
||||
# 创建 /data/uploads 目录
|
||||
RUN mkdir -p /data/uploads
|
||||
|
||||
# 暴露 80 端口
|
||||
EXPOSE 80
|
||||
|
|
@ -23,7 +23,7 @@ export class AuthService {
|
|||
private readonly staffService: StaffService,
|
||||
private readonly jwtService: JwtService,
|
||||
private readonly sessionService: SessionService,
|
||||
) { }
|
||||
) {}
|
||||
async validateFileRequest(params: FileRequest): Promise<FileAuthResult> {
|
||||
try {
|
||||
// 基础参数验证
|
||||
|
|
@ -31,7 +31,6 @@ export class AuthService {
|
|||
return { isValid: false, error: FileValidationErrorType.INVALID_URI };
|
||||
}
|
||||
const fileId = extractFileIdFromNginxUrl(params.originalUri);
|
||||
console.log('auth', params.originalUri, fileId);
|
||||
const resource = await db.resource.findFirst({ where: { fileId } });
|
||||
|
||||
// 资源验证
|
||||
|
|
@ -170,13 +169,13 @@ export class AuthService {
|
|||
showname,
|
||||
department: deptId
|
||||
? {
|
||||
connect: { id: deptId },
|
||||
}
|
||||
connect: { id: deptId },
|
||||
}
|
||||
: undefined,
|
||||
domain: deptId
|
||||
? {
|
||||
connect: { id: deptId },
|
||||
}
|
||||
connect: { id: deptId },
|
||||
}
|
||||
: undefined,
|
||||
// domainId: data.deptId,
|
||||
meta: {
|
||||
|
|
|
|||
|
|
@ -101,7 +101,7 @@ export function getClientIp(req: any): string {
|
|||
return ip || '';
|
||||
}
|
||||
export async function updatePostState(id: string) {
|
||||
console.log('updateState');
|
||||
// console.log('updateState');
|
||||
const post = await db.post.findUnique({
|
||||
where: {
|
||||
id: id,
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ const pipeline = new ResourceProcessingPipeline()
|
|||
.addProcessor(new VideoProcessor());
|
||||
export default async function processJob(job: Job<any, any, QueueJobType>) {
|
||||
if (job.name === QueueJobType.FILE_PROCESS) {
|
||||
// console.log(job);
|
||||
const { resource } = job.data;
|
||||
if (!resource) {
|
||||
throw new Error('No resource provided in job data');
|
||||
|
|
|
|||
|
|
@ -1,158 +1,185 @@
|
|||
import { readSyncMessage } from '@nice/common';
|
||||
import { applyAwarenessUpdate, Awareness, encodeAwarenessUpdate, removeAwarenessStates, writeSyncStep1, writeUpdate } from '@nice/common';
|
||||
import {
|
||||
applyAwarenessUpdate,
|
||||
Awareness,
|
||||
encodeAwarenessUpdate,
|
||||
removeAwarenessStates,
|
||||
writeSyncStep1,
|
||||
writeUpdate,
|
||||
} from '@nice/common';
|
||||
import * as encoding from 'lib0/encoding';
|
||||
import * as decoding from 'lib0/decoding';
|
||||
import * as Y from "yjs"
|
||||
import * as Y from 'yjs';
|
||||
import { debounce } from 'lodash';
|
||||
import { getPersistence, setPersistence } from './persistence';
|
||||
import { callbackHandler, isCallbackSet } from './callback';
|
||||
import { WebSocket } from "ws";
|
||||
import { WebSocket } from 'ws';
|
||||
import { YMessageType } from '@nice/common';
|
||||
import { WSClient } from '../types';
|
||||
export const docs = new Map<string, WSSharedDoc>();
|
||||
export const CALLBACK_DEBOUNCE_WAIT = parseInt(process.env.CALLBACK_DEBOUNCE_WAIT || '2000');
|
||||
export const CALLBACK_DEBOUNCE_MAXWAIT = parseInt(process.env.CALLBACK_DEBOUNCE_MAXWAIT || '10000');
|
||||
export const CALLBACK_DEBOUNCE_WAIT = parseInt(
|
||||
process.env.CALLBACK_DEBOUNCE_WAIT || '2000',
|
||||
);
|
||||
export const CALLBACK_DEBOUNCE_MAXWAIT = parseInt(
|
||||
process.env.CALLBACK_DEBOUNCE_MAXWAIT || '10000',
|
||||
);
|
||||
export const getYDoc = (docname: string, gc = true): WSSharedDoc => {
|
||||
return docs.get(docname) || createYDoc(docname, gc);
|
||||
return docs.get(docname) || createYDoc(docname, gc);
|
||||
};
|
||||
const createYDoc = (docname: string, gc: boolean): WSSharedDoc => {
|
||||
const doc = new WSSharedDoc(docname, gc);
|
||||
docs.set(docname, doc);
|
||||
return doc;
|
||||
const doc = new WSSharedDoc(docname, gc);
|
||||
docs.set(docname, doc);
|
||||
return doc;
|
||||
};
|
||||
|
||||
export const send = (doc: WSSharedDoc, conn: WebSocket, m: Uint8Array) => {
|
||||
if (conn.readyState !== WebSocket.OPEN) {
|
||||
closeConn(doc, conn);
|
||||
return;
|
||||
}
|
||||
try {
|
||||
conn.send(m, {}, err => { err != null && closeConn(doc, conn) });
|
||||
} catch (e) {
|
||||
closeConn(doc, conn);
|
||||
}
|
||||
if (conn.readyState !== WebSocket.OPEN) {
|
||||
closeConn(doc, conn);
|
||||
return;
|
||||
}
|
||||
try {
|
||||
conn.send(m, {}, (err) => {
|
||||
err != null && closeConn(doc, conn);
|
||||
});
|
||||
} catch (e) {
|
||||
closeConn(doc, conn);
|
||||
}
|
||||
};
|
||||
export const closeConn = (doc: WSSharedDoc, conn: WebSocket) => {
|
||||
if (doc.conns.has(conn)) {
|
||||
const controlledIds = doc.conns.get(conn) as Set<number>;
|
||||
doc.conns.delete(conn);
|
||||
removeAwarenessStates(
|
||||
doc.awareness,
|
||||
Array.from(controlledIds),
|
||||
null
|
||||
);
|
||||
if (doc.conns.has(conn)) {
|
||||
const controlledIds = doc.conns.get(conn) as Set<number>;
|
||||
doc.conns.delete(conn);
|
||||
removeAwarenessStates(doc.awareness, Array.from(controlledIds), null);
|
||||
|
||||
if (doc.conns.size === 0 && getPersistence() !== null) {
|
||||
getPersistence()?.writeState(doc.name, doc).then(() => {
|
||||
doc.destroy();
|
||||
});
|
||||
docs.delete(doc.name);
|
||||
}
|
||||
if (doc.conns.size === 0 && getPersistence() !== null) {
|
||||
getPersistence()
|
||||
?.writeState(doc.name, doc)
|
||||
.then(() => {
|
||||
doc.destroy();
|
||||
});
|
||||
docs.delete(doc.name);
|
||||
}
|
||||
conn.close();
|
||||
}
|
||||
conn.close();
|
||||
};
|
||||
|
||||
export const messageListener = (conn: WSClient, doc: WSSharedDoc, message: Uint8Array) => {
|
||||
try {
|
||||
const encoder = encoding.createEncoder();
|
||||
const decoder = decoding.createDecoder(message);
|
||||
const messageType = decoding.readVarUint(decoder);
|
||||
switch (messageType) {
|
||||
case YMessageType.Sync:
|
||||
// console.log(`received sync message ${message.length}`)
|
||||
encoding.writeVarUint(encoder, YMessageType.Sync);
|
||||
readSyncMessage(decoder, encoder, doc, conn);
|
||||
if (encoding.length(encoder) > 1) {
|
||||
send(doc, conn, encoding.toUint8Array(encoder));
|
||||
}
|
||||
break;
|
||||
|
||||
case YMessageType.Awareness: {
|
||||
applyAwarenessUpdate(
|
||||
doc.awareness,
|
||||
decoding.readVarUint8Array(decoder),
|
||||
conn
|
||||
);
|
||||
// console.log(`received awareness message from ${conn.origin} total ${doc.awareness.states.size}`)
|
||||
break;
|
||||
}
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(err);
|
||||
doc.emit('error' as any, [err]);
|
||||
}
|
||||
};
|
||||
|
||||
const updateHandler = (update: Uint8Array, _origin: any, doc: WSSharedDoc, _tr: any) => {
|
||||
export const messageListener = (
|
||||
conn: WSClient,
|
||||
doc: WSSharedDoc,
|
||||
message: Uint8Array,
|
||||
) => {
|
||||
try {
|
||||
const encoder = encoding.createEncoder();
|
||||
encoding.writeVarUint(encoder, YMessageType.Sync);
|
||||
writeUpdate(encoder, update);
|
||||
const message = encoding.toUint8Array(encoder);
|
||||
doc.conns.forEach((_, conn) => send(doc, conn, message));
|
||||
const decoder = decoding.createDecoder(message);
|
||||
const messageType = decoding.readVarUint(decoder);
|
||||
switch (messageType) {
|
||||
case YMessageType.Sync:
|
||||
encoding.writeVarUint(encoder, YMessageType.Sync);
|
||||
readSyncMessage(decoder, encoder, doc, conn);
|
||||
if (encoding.length(encoder) > 1) {
|
||||
send(doc, conn, encoding.toUint8Array(encoder));
|
||||
}
|
||||
break;
|
||||
|
||||
case YMessageType.Awareness: {
|
||||
applyAwarenessUpdate(
|
||||
doc.awareness,
|
||||
decoding.readVarUint8Array(decoder),
|
||||
conn,
|
||||
);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(err);
|
||||
doc.emit('error' as any, [err]);
|
||||
}
|
||||
};
|
||||
|
||||
let contentInitializor: (ydoc: Y.Doc) => Promise<void> = (_ydoc) => Promise.resolve();
|
||||
const updateHandler = (
|
||||
update: Uint8Array,
|
||||
_origin: any,
|
||||
doc: WSSharedDoc,
|
||||
_tr: any,
|
||||
) => {
|
||||
const encoder = encoding.createEncoder();
|
||||
encoding.writeVarUint(encoder, YMessageType.Sync);
|
||||
writeUpdate(encoder, update);
|
||||
const message = encoding.toUint8Array(encoder);
|
||||
doc.conns.forEach((_, conn) => send(doc, conn, message));
|
||||
};
|
||||
|
||||
let contentInitializor: (ydoc: Y.Doc) => Promise<void> = (_ydoc) =>
|
||||
Promise.resolve();
|
||||
export const setContentInitializor = (f: (ydoc: Y.Doc) => Promise<void>) => {
|
||||
contentInitializor = f;
|
||||
contentInitializor = f;
|
||||
};
|
||||
|
||||
export class WSSharedDoc extends Y.Doc {
|
||||
name: string;
|
||||
conns: Map<WebSocket, Set<number>>;
|
||||
awareness: Awareness;
|
||||
whenInitialized: Promise<void>;
|
||||
name: string;
|
||||
conns: Map<WebSocket, Set<number>>;
|
||||
awareness: Awareness;
|
||||
whenInitialized: Promise<void>;
|
||||
|
||||
constructor(name: string, gc: boolean) {
|
||||
super({ gc });
|
||||
constructor(name: string, gc: boolean) {
|
||||
super({ gc });
|
||||
|
||||
this.name = name;
|
||||
this.conns = new Map();
|
||||
this.awareness = new Awareness(this);
|
||||
this.awareness.setLocalState(null);
|
||||
this.name = name;
|
||||
this.conns = new Map();
|
||||
this.awareness = new Awareness(this);
|
||||
this.awareness.setLocalState(null);
|
||||
|
||||
const awarenessUpdateHandler = ({
|
||||
added,
|
||||
updated,
|
||||
removed
|
||||
}: {
|
||||
added: number[],
|
||||
updated: number[],
|
||||
removed: number[]
|
||||
}, conn: WebSocket) => {
|
||||
const changedClients = added.concat(updated, removed);
|
||||
if (changedClients.length === 0) return
|
||||
if (conn !== null) {
|
||||
const connControlledIDs = this.conns.get(conn) as Set<number>;
|
||||
if (connControlledIDs !== undefined) {
|
||||
added.forEach(clientID => { connControlledIDs.add(clientID); });
|
||||
removed.forEach(clientID => { connControlledIDs.delete(clientID); });
|
||||
}
|
||||
}
|
||||
|
||||
const encoder = encoding.createEncoder();
|
||||
encoding.writeVarUint(encoder, YMessageType.Awareness);
|
||||
encoding.writeVarUint8Array(
|
||||
encoder,
|
||||
encodeAwarenessUpdate(this.awareness, changedClients)
|
||||
);
|
||||
const buff = encoding.toUint8Array(encoder);
|
||||
|
||||
this.conns.forEach((_, c) => {
|
||||
send(this, c, buff);
|
||||
});
|
||||
};
|
||||
|
||||
this.awareness.on('update', awarenessUpdateHandler);
|
||||
this.on('update', updateHandler as any);
|
||||
|
||||
if (isCallbackSet) {
|
||||
this.on('update', debounce(
|
||||
callbackHandler as any,
|
||||
CALLBACK_DEBOUNCE_WAIT,
|
||||
{ maxWait: CALLBACK_DEBOUNCE_MAXWAIT }
|
||||
) as any);
|
||||
const awarenessUpdateHandler = (
|
||||
{
|
||||
added,
|
||||
updated,
|
||||
removed,
|
||||
}: {
|
||||
added: number[];
|
||||
updated: number[];
|
||||
removed: number[];
|
||||
},
|
||||
conn: WebSocket,
|
||||
) => {
|
||||
const changedClients = added.concat(updated, removed);
|
||||
if (changedClients.length === 0) return;
|
||||
if (conn !== null) {
|
||||
const connControlledIDs = this.conns.get(conn) as Set<number>;
|
||||
if (connControlledIDs !== undefined) {
|
||||
added.forEach((clientID) => {
|
||||
connControlledIDs.add(clientID);
|
||||
});
|
||||
removed.forEach((clientID) => {
|
||||
connControlledIDs.delete(clientID);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
this.whenInitialized = contentInitializor(this);
|
||||
const encoder = encoding.createEncoder();
|
||||
encoding.writeVarUint(encoder, YMessageType.Awareness);
|
||||
encoding.writeVarUint8Array(
|
||||
encoder,
|
||||
encodeAwarenessUpdate(this.awareness, changedClients),
|
||||
);
|
||||
const buff = encoding.toUint8Array(encoder);
|
||||
|
||||
this.conns.forEach((_, c) => {
|
||||
send(this, c, buff);
|
||||
});
|
||||
};
|
||||
|
||||
this.awareness.on('update', awarenessUpdateHandler);
|
||||
this.on('update', updateHandler as any);
|
||||
|
||||
if (isCallbackSet) {
|
||||
this.on(
|
||||
'update',
|
||||
debounce(callbackHandler as any, CALLBACK_DEBOUNCE_WAIT, {
|
||||
maxWait: CALLBACK_DEBOUNCE_MAXWAIT,
|
||||
}) as any,
|
||||
);
|
||||
}
|
||||
|
||||
this.whenInitialized = contentInitializor(this);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,148 +1,146 @@
|
|||
import { createReadStream } from "fs";
|
||||
import { createInterface } from "readline";
|
||||
import { createReadStream } from 'fs';
|
||||
import { createInterface } from 'readline';
|
||||
|
||||
import { db } from '@nice/common';
|
||||
import * as tus from "tus-js-client";
|
||||
import { db } from '@nice/common';
|
||||
import * as tus from 'tus-js-client';
|
||||
import ExcelJS from 'exceljs';
|
||||
|
||||
export function truncateStringByByte(str, maxBytes) {
|
||||
let byteCount = 0;
|
||||
let index = 0;
|
||||
while (index < str.length && byteCount + new TextEncoder().encode(str[index]).length <= maxBytes) {
|
||||
byteCount += new TextEncoder().encode(str[index]).length;
|
||||
index++;
|
||||
}
|
||||
return str.substring(0, index) + (index < str.length ? "..." : "");
|
||||
let byteCount = 0;
|
||||
let index = 0;
|
||||
while (
|
||||
index < str.length &&
|
||||
byteCount + new TextEncoder().encode(str[index]).length <= maxBytes
|
||||
) {
|
||||
byteCount += new TextEncoder().encode(str[index]).length;
|
||||
index++;
|
||||
}
|
||||
return str.substring(0, index) + (index < str.length ? '...' : '');
|
||||
}
|
||||
export async function loadPoliciesFromCSV(filePath: string) {
|
||||
const policies = {
|
||||
p: [],
|
||||
g: []
|
||||
};
|
||||
const stream = createReadStream(filePath);
|
||||
const rl = createInterface({
|
||||
input: stream,
|
||||
crlfDelay: Infinity
|
||||
});
|
||||
const policies = {
|
||||
p: [],
|
||||
g: [],
|
||||
};
|
||||
const stream = createReadStream(filePath);
|
||||
const rl = createInterface({
|
||||
input: stream,
|
||||
crlfDelay: Infinity,
|
||||
});
|
||||
|
||||
// Updated regex to handle commas inside parentheses as part of a single field
|
||||
const regex = /(?:\((?:[^)(]+|\((?:[^)(]+|\([^)(]*\))*\))*\)|"(?:\\"|[^"])*"|[^,"()\s]+)(?=\s*,|\s*$)/g;
|
||||
// Updated regex to handle commas inside parentheses as part of a single field
|
||||
const regex =
|
||||
/(?:\((?:[^)(]+|\((?:[^)(]+|\([^)(]*\))*\))*\)|"(?:\\"|[^"])*"|[^,"()\s]+)(?=\s*,|\s*$)/g;
|
||||
|
||||
for await (const line of rl) {
|
||||
// Ignore empty lines and comments
|
||||
if (line.trim() && !line.startsWith("#")) {
|
||||
const parts = [];
|
||||
let match;
|
||||
while ((match = regex.exec(line)) !== null) {
|
||||
// Remove quotes if present and trim whitespace
|
||||
parts.push(match[0].replace(/^"|"$/g, '').trim());
|
||||
}
|
||||
for await (const line of rl) {
|
||||
// Ignore empty lines and comments
|
||||
if (line.trim() && !line.startsWith('#')) {
|
||||
const parts = [];
|
||||
let match;
|
||||
while ((match = regex.exec(line)) !== null) {
|
||||
// Remove quotes if present and trim whitespace
|
||||
parts.push(match[0].replace(/^"|"$/g, '').trim());
|
||||
}
|
||||
|
||||
// Check policy type (p or g)
|
||||
const ptype = parts[0];
|
||||
const rule = parts.slice(1);
|
||||
// Check policy type (p or g)
|
||||
const ptype = parts[0];
|
||||
const rule = parts.slice(1);
|
||||
|
||||
if (ptype === 'p' || ptype === 'g') {
|
||||
policies[ptype].push(rule);
|
||||
} else {
|
||||
console.warn(`Unknown policy type '${ptype}' in policy: ${line}`);
|
||||
}
|
||||
}
|
||||
if (ptype === 'p' || ptype === 'g') {
|
||||
policies[ptype].push(rule);
|
||||
} else {
|
||||
console.warn(`Unknown policy type '${ptype}' in policy: ${line}`);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return policies;
|
||||
return policies;
|
||||
}
|
||||
|
||||
export function uploadFile(blob: any, fileName: string) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const upload = new tus.Upload(blob, {
|
||||
endpoint: `${process.env.TUS_URL}/files/`,
|
||||
retryDelays: [0, 1000, 3000, 5000],
|
||||
metadata: {
|
||||
filename: fileName,
|
||||
filetype:
|
||||
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error("Failed because: " + error);
|
||||
reject(error); // 错误时,我们要拒绝 promise
|
||||
},
|
||||
onProgress: (bytesUploaded, bytesTotal) => {
|
||||
const percentage = ((bytesUploaded / bytesTotal) * 100).toFixed(2);
|
||||
// console.log(bytesUploaded, bytesTotal, `${percentage}%`);
|
||||
},
|
||||
onSuccess: () => {
|
||||
// console.log('Upload finished:', upload.url);
|
||||
resolve(upload.url); // 成功后,我们解析 promise,并返回上传的 URL
|
||||
},
|
||||
});
|
||||
upload.start();
|
||||
return new Promise((resolve, reject) => {
|
||||
const upload = new tus.Upload(blob, {
|
||||
endpoint: `${process.env.TUS_URL}/files/`,
|
||||
retryDelays: [0, 1000, 3000, 5000],
|
||||
metadata: {
|
||||
filename: fileName,
|
||||
filetype:
|
||||
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed because: ' + error);
|
||||
reject(error); // 错误时,我们要拒绝 promise
|
||||
},
|
||||
onProgress: (bytesUploaded, bytesTotal) => {
|
||||
const percentage = ((bytesUploaded / bytesTotal) * 100).toFixed(2);
|
||||
},
|
||||
onSuccess: () => {
|
||||
resolve(upload.url); // 成功后,我们解析 promise,并返回上传的 URL
|
||||
},
|
||||
});
|
||||
upload.start();
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
class TreeNode {
|
||||
value: string;
|
||||
children: TreeNode[];
|
||||
|
||||
constructor(value: string) {
|
||||
this.value = value;
|
||||
this.children = [];
|
||||
}
|
||||
|
||||
addChild(childValue: string): TreeNode {
|
||||
let newChild = undefined
|
||||
if (this.children.findIndex(child => child.value === childValue) === -1) {
|
||||
newChild = new TreeNode(childValue);
|
||||
this.children.push(newChild)
|
||||
|
||||
}
|
||||
return this.children.find(child => child.value === childValue)
|
||||
value: string;
|
||||
children: TreeNode[];
|
||||
|
||||
constructor(value: string) {
|
||||
this.value = value;
|
||||
this.children = [];
|
||||
}
|
||||
|
||||
addChild(childValue: string): TreeNode {
|
||||
let newChild = undefined;
|
||||
if (this.children.findIndex((child) => child.value === childValue) === -1) {
|
||||
newChild = new TreeNode(childValue);
|
||||
this.children.push(newChild);
|
||||
}
|
||||
return this.children.find((child) => child.value === childValue);
|
||||
}
|
||||
}
|
||||
function buildTree(data: string[][]): TreeNode {
|
||||
const root = new TreeNode('root');
|
||||
try {
|
||||
for (const path of data) {
|
||||
let currentNode = root;
|
||||
for (const value of path) {
|
||||
currentNode = currentNode.addChild(value);
|
||||
}
|
||||
}
|
||||
return root;
|
||||
const root = new TreeNode('root');
|
||||
try {
|
||||
for (const path of data) {
|
||||
let currentNode = root;
|
||||
for (const value of path) {
|
||||
currentNode = currentNode.addChild(value);
|
||||
}
|
||||
}
|
||||
catch (error) {
|
||||
console.error(error)
|
||||
}
|
||||
|
||||
|
||||
return root;
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
}
|
||||
export function printTree(node: TreeNode, level: number = 0): void {
|
||||
const indent = ' '.repeat(level);
|
||||
// console.log(`${indent}${node.value}`);
|
||||
for (const child of node.children) {
|
||||
printTree(child, level + 1);
|
||||
}
|
||||
const indent = ' '.repeat(level);
|
||||
for (const child of node.children) {
|
||||
printTree(child, level + 1);
|
||||
}
|
||||
}
|
||||
export async function generateTreeFromFile(file: Buffer): Promise<TreeNode> {
|
||||
const workbook = new ExcelJS.Workbook();
|
||||
await workbook.xlsx.load(file);
|
||||
const worksheet = workbook.getWorksheet(1);
|
||||
const workbook = new ExcelJS.Workbook();
|
||||
await workbook.xlsx.load(file);
|
||||
const worksheet = workbook.getWorksheet(1);
|
||||
|
||||
const data: string[][] = [];
|
||||
const data: string[][] = [];
|
||||
|
||||
worksheet.eachRow((row, rowNumber) => {
|
||||
if (rowNumber > 1) { // Skip header row if any
|
||||
const rowData: string[] = (row.values as string[]).slice(2).map(cell => (cell || '').toString());
|
||||
data.push(rowData.map(value => value.trim()));
|
||||
}
|
||||
});
|
||||
// Fill forward values
|
||||
for (let i = 1; i < data.length; i++) {
|
||||
for (let j = 0; j < data[i].length; j++) {
|
||||
if (!data[i][j]) data[i][j] = data[i - 1][j];
|
||||
}
|
||||
worksheet.eachRow((row, rowNumber) => {
|
||||
if (rowNumber > 1) {
|
||||
// Skip header row if any
|
||||
const rowData: string[] = (row.values as string[])
|
||||
.slice(2)
|
||||
.map((cell) => (cell || '').toString());
|
||||
data.push(rowData.map((value) => value.trim()));
|
||||
}
|
||||
return buildTree(data);
|
||||
});
|
||||
// Fill forward values
|
||||
for (let i = 1; i < data.length; i++) {
|
||||
for (let j = 0; j < data[i].length; j++) {
|
||||
if (!data[i][j]) data[i][j] = data[i - 1][j];
|
||||
}
|
||||
}
|
||||
return buildTree(data);
|
||||
}
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
#!/bin/sh
|
||||
|
||||
# 使用envsubst替换index.html中的环境变量占位符
|
||||
envsubst < /usr/share/nginx/html/index.html > /usr/share/nginx/html/index.html.tmp
|
||||
mv /usr/share/nginx/html/index.html.tmp /usr/share/nginx/html/index.html
|
||||
# 运行serve来提供静态文件
|
||||
exec nginx -g "daemon off;"
|
||||
|
|
@ -8,6 +8,7 @@
|
|||
<script>
|
||||
window.env = {
|
||||
VITE_APP_SERVER_IP: "$VITE_APP_SERVER_IP",
|
||||
VITE_APP_UOLOAD_IP: "$VITE_APP_UOLOAD_IP",
|
||||
VITE_APP_APP_NAME: "$VITE_APP_APP_NAME",
|
||||
VITE_APP_VERSION: "$VITE_APP_VERSION",
|
||||
};
|
||||
|
|
|
|||
|
|
@ -1,105 +0,0 @@
|
|||
import React, { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { addEdge, ReactFlow, Background, Controls, Edge, Node, ReactFlowProvider, useEdgesState, useNodesState, MiniMap, Panel, BackgroundVariant, ControlButton, applyNodeChanges, applyEdgeChanges, SelectionMode, OnNodesChange, OnEdgesChange, useReactFlow, useOnSelectionChange, useNodesInitialized } from '@xyflow/react';
|
||||
import { Button } from '../../element/Button';
|
||||
import '@xyflow/react/dist/style.css';
|
||||
import { edgeTypes, GraphState, nodeTypes } from './types';
|
||||
import useGraphStore from './store';
|
||||
import { shallow } from 'zustand/shallow';
|
||||
import { useKeyboardCtrl } from './useKeyboardCtrl';
|
||||
import { getMindMapLayout } from './layout';
|
||||
|
||||
|
||||
|
||||
|
||||
const selector = (store: GraphState) => ({
|
||||
nodes: store.present.nodes,
|
||||
edges: store.present.edges,
|
||||
setNodes: store.setNodes,
|
||||
setEdges: store.setEdges,
|
||||
record: store.record,
|
||||
onNodesChange: store.onNodesChange,
|
||||
onEdgesChange: store.onEdgesChange,
|
||||
});
|
||||
|
||||
const panOnDrag = [1, 2];
|
||||
|
||||
const Flow: React.FC = () => {
|
||||
|
||||
const store = useGraphStore(selector, shallow);
|
||||
useKeyboardCtrl()
|
||||
const nodesInitialized = useNodesInitialized();
|
||||
const onLayout = useCallback(async () => {
|
||||
const layouted = getMindMapLayout({ nodes: store.nodes, edges: store.edges })
|
||||
store.setNodes(layouted.nodes)
|
||||
store.setEdges(layouted.edges)
|
||||
}, [store.nodes, store.edges]);
|
||||
useEffect(() => {
|
||||
if (nodesInitialized && store.nodes.length) {
|
||||
console.log('layout')
|
||||
onLayout()
|
||||
}
|
||||
}, [nodesInitialized, store.nodes.length]);
|
||||
|
||||
return (
|
||||
<ReactFlow
|
||||
nodesDraggable={true}
|
||||
nodes={store.nodes}
|
||||
edges={store.edges}
|
||||
|
||||
onNodesChange={(changes) => {
|
||||
const recordTypes = new Set(['remove', 'select']);
|
||||
const undoChanges = changes.filter(change => recordTypes.has(change.type))
|
||||
const otherChanges = changes.filter(change => !recordTypes.has(change.type))
|
||||
if (undoChanges.length)
|
||||
store.record(() => {
|
||||
store.onNodesChange(undoChanges);
|
||||
});
|
||||
store.onNodesChange(otherChanges);
|
||||
}}
|
||||
onEdgesChange={(changes) => {
|
||||
const recordTypes = new Set(['remove', 'select']);
|
||||
changes.forEach((change) => {
|
||||
if (recordTypes.has(change.type)) {
|
||||
store.record(() => {
|
||||
store.onEdgesChange([change]);
|
||||
});
|
||||
} else {
|
||||
store.onEdgesChange([change]);
|
||||
}
|
||||
});
|
||||
}}
|
||||
selectionOnDrag
|
||||
panOnDrag={panOnDrag}
|
||||
nodeTypes={nodeTypes}
|
||||
edgeTypes={edgeTypes}
|
||||
selectionMode={SelectionMode.Partial}
|
||||
fitView
|
||||
minZoom={0.001}
|
||||
maxZoom={1000}
|
||||
>
|
||||
<Panel position="top-right">
|
||||
<div className='flex items-center gap-4'>
|
||||
<Button onClick={onLayout}>自动布局</Button>
|
||||
<span>节点个数{store.nodes.length}</span>
|
||||
<span>边条数{store.edges.length}</span>
|
||||
</div>
|
||||
|
||||
</Panel>
|
||||
<Background variant={BackgroundVariant.Dots} />
|
||||
<Controls >
|
||||
<ControlButton>测试</ControlButton>
|
||||
</Controls>
|
||||
<MiniMap pannable zoomable nodeStrokeWidth={3} position='bottom-right'></MiniMap>
|
||||
</ReactFlow>
|
||||
);
|
||||
};
|
||||
|
||||
const GraphEditor: React.FC = () => {
|
||||
return (
|
||||
<ReactFlowProvider>
|
||||
<Flow></Flow>
|
||||
</ReactFlowProvider>
|
||||
);
|
||||
};
|
||||
|
||||
export default GraphEditor;
|
||||
|
|
@ -1,57 +0,0 @@
|
|||
import { MarkerType } from "@xyflow/react";
|
||||
|
||||
// 生成思维导图数据的函数
|
||||
function generateMindMapData(levels: number, nodesPerLevel: number) {
|
||||
const nodes = [];
|
||||
const edges = [];
|
||||
|
||||
// 添加根节点
|
||||
nodes.push({
|
||||
id: 'root',
|
||||
data: { label: '核心主题', level: 0 },
|
||||
type: 'graph-node',
|
||||
position: { x: 0, y: 0 }
|
||||
});
|
||||
|
||||
// 为每一层生成节点
|
||||
for (let level = 1; level <= levels; level++) {
|
||||
const angleStep = (2 * Math.PI) / nodesPerLevel;
|
||||
const radius = level * 200; // 每层的半径
|
||||
|
||||
for (let i = 0; i < nodesPerLevel; i++) {
|
||||
const angle = i * angleStep;
|
||||
const nodeId = `node-${level}-${i}`;
|
||||
|
||||
// 计算节点位置
|
||||
const x = Math.cos(angle) * radius;
|
||||
const y = Math.sin(angle) * radius;
|
||||
|
||||
// 添加节点
|
||||
nodes.push({
|
||||
id: nodeId,
|
||||
data: { label: `主题${level}-${i}`, level },
|
||||
type: 'graph-node',
|
||||
position: { x, y }
|
||||
});
|
||||
|
||||
// 添加边
|
||||
// 第一层连接到根节点,其他层连接到上一层的节点
|
||||
const sourceId = level === 1 ? 'root' : `node-${level - 1}-${Math.floor(i / 2)}`;
|
||||
edges.push({
|
||||
id: `edge-${level}-${i}`,
|
||||
source: sourceId,
|
||||
target: nodeId,
|
||||
type: 'graph-edge',
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return { nodes, edges };
|
||||
}
|
||||
|
||||
// 生成测试数据 - 可以调整参数来控制规模
|
||||
// 参数1: 层级数量
|
||||
// 参数2: 每层节点数量
|
||||
const { nodes: initialNodes, edges: initialEdges } = generateMindMapData(2, 3);
|
||||
|
||||
export { initialNodes, initialEdges };
|
||||
|
|
@ -1,47 +0,0 @@
|
|||
import { EdgeProps, getBezierPath, useInternalNode } from '@xyflow/react';
|
||||
import { getEdgeParams } from '../utils';
|
||||
|
||||
/**
|
||||
* FloatingEdge 组件用于渲染图中的浮动边。
|
||||
* 该组件通过计算源节点和目标节点的位置,生成贝塞尔曲线路径,并渲染为SVG路径元素。
|
||||
* 适用于需要自定义边样式的图结构可视化场景。
|
||||
*/
|
||||
function FloatingEdge({ id, source, target, markerEnd, style }: EdgeProps) {
|
||||
// 使用 useInternalNode 钩子获取源节点和目标节点的内部节点信息
|
||||
const sourceNode = useInternalNode(source);
|
||||
const targetNode = useInternalNode(target);
|
||||
|
||||
// 如果源节点或目标节点不存在,则不渲染任何内容
|
||||
if (!sourceNode || !targetNode) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// 获取边的参数,包括源节点和目标节点的坐标及位置信息
|
||||
const { sx, sy, tx, ty, sourcePos, targetPos } = getEdgeParams(
|
||||
sourceNode,
|
||||
targetNode,
|
||||
);
|
||||
|
||||
// 使用 getBezierPath 函数生成贝塞尔曲线路径
|
||||
const [edgePath] = getBezierPath({
|
||||
sourceX: sx,
|
||||
sourceY: sy,
|
||||
sourcePosition: sourcePos,
|
||||
targetPosition: targetPos,
|
||||
targetX: tx,
|
||||
targetY: ty,
|
||||
});
|
||||
|
||||
// 返回 SVG 路径元素,表示图中的边
|
||||
return (
|
||||
<path
|
||||
id={id}
|
||||
className="react-flow__edge-path"
|
||||
d={edgePath}
|
||||
markerEnd={markerEnd}
|
||||
style={style}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
export default FloatingEdge;
|
||||
|
|
@ -1,44 +0,0 @@
|
|||
import { BaseEdge, Edge, EdgeLabelRenderer, EdgeProps, getBezierPath, getSmoothStepPath, getStraightPath, useReactFlow } from '@xyflow/react';
|
||||
|
||||
export type GraphEdge = Edge<{ text: string }, 'graph-edge'>;
|
||||
|
||||
export const GraphEdge = ({ id, sourceX, sourceY, targetX, targetY, data, ...props }: EdgeProps<GraphEdge>) => {
|
||||
const { setEdges } = useReactFlow();
|
||||
// 使用贝塞尔曲线代替直线,让连线更流畅
|
||||
const [edgePath, labelX, labelY] = getBezierPath({
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
});
|
||||
|
||||
return (
|
||||
<>
|
||||
<BaseEdge
|
||||
path={edgePath}
|
||||
style={{
|
||||
strokeWidth: 2,
|
||||
stroke: '#b1b1b7',
|
||||
transition: 'stroke 0.3s, stroke-width 0.3s',
|
||||
}}
|
||||
className="hover:stroke-blue-500 hover:stroke-[3px]"
|
||||
/>
|
||||
{/* 添加边的标签渲染器 */}
|
||||
<EdgeLabelRenderer>
|
||||
{data?.text && (
|
||||
<div
|
||||
style={{
|
||||
position: 'absolute',
|
||||
transform: `translate(-50%, -50%) translate(${labelX}px,${labelY}px)`,
|
||||
fontSize: 12,
|
||||
pointerEvents: 'all',
|
||||
}}
|
||||
className="nodrag nopan px-2 py-1 rounded bg-white/80 shadow-sm"
|
||||
>
|
||||
{data.text}
|
||||
</div>
|
||||
)}
|
||||
</EdgeLabelRenderer>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
|
@ -1,219 +0,0 @@
|
|||
import { areLinesReverseDirection, areLinesSameDirection } from "../edge";
|
||||
import {
|
||||
ControlPoint,
|
||||
NodeRect,
|
||||
isEqualPoint,
|
||||
isSegmentCrossingRect,
|
||||
} from "../point";
|
||||
|
||||
interface GetAStarPathParams {
|
||||
/**
|
||||
* Collection of potential control points between `sourceOffset` and `targetOffset`, excluding the `source` and `target` points.
|
||||
*/
|
||||
points: ControlPoint[];
|
||||
source: ControlPoint;
|
||||
target: ControlPoint;
|
||||
/**
|
||||
* Node size information for the `source` and `target`, used to optimize edge routing without intersecting nodes.
|
||||
*/
|
||||
sourceRect: NodeRect;
|
||||
targetRect: NodeRect;
|
||||
}
|
||||
|
||||
/**
|
||||
* Utilizes the [A\* search algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) combined with
|
||||
* [Manhattan Distance](https://simple.wikipedia.org/wiki/Manhattan_distance) to find the optimal path for edges.
|
||||
*
|
||||
* @returns Control points including sourceOffset and targetOffset (not including source and target points).
|
||||
*/
|
||||
export const getAStarPath = ({
|
||||
points,
|
||||
source,
|
||||
target,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
}: GetAStarPathParams): ControlPoint[] => {
|
||||
if (points.length < 3) {
|
||||
return points;
|
||||
}
|
||||
const start = points[0];
|
||||
const end = points[points.length - 1];
|
||||
const openSet: ControlPoint[] = [start];
|
||||
const closedSet: Set<ControlPoint> = new Set();
|
||||
const cameFrom: Map<ControlPoint, ControlPoint> = new Map();
|
||||
const gScore: Map<ControlPoint, number> = new Map().set(start, 0);
|
||||
const fScore: Map<ControlPoint, number> = new Map().set(
|
||||
start,
|
||||
heuristicCostEstimate({
|
||||
from: start,
|
||||
to: start,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
})
|
||||
);
|
||||
|
||||
while (openSet.length) {
|
||||
let current;
|
||||
let currentIdx;
|
||||
let lowestFScore = Infinity;
|
||||
openSet.forEach((p, idx) => {
|
||||
const score = fScore.get(p) ?? 0;
|
||||
if (score < lowestFScore) {
|
||||
lowestFScore = score;
|
||||
current = p;
|
||||
currentIdx = idx;
|
||||
}
|
||||
});
|
||||
|
||||
if (!current) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (current === end) {
|
||||
return buildPath(cameFrom, current);
|
||||
}
|
||||
|
||||
openSet.splice(currentIdx!, 1);
|
||||
closedSet.add(current);
|
||||
|
||||
const curFScore = fScore.get(current) ?? 0;
|
||||
const previous = cameFrom.get(current);
|
||||
const neighbors = getNextNeighborPoints({
|
||||
points,
|
||||
previous,
|
||||
current,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
});
|
||||
for (const neighbor of neighbors) {
|
||||
if (closedSet.has(neighbor)) {
|
||||
continue;
|
||||
}
|
||||
const neighborGScore = gScore.get(neighbor) ?? 0;
|
||||
const tentativeGScore = curFScore + estimateDistance(current, neighbor);
|
||||
if (openSet.includes(neighbor) && tentativeGScore >= neighborGScore) {
|
||||
continue;
|
||||
}
|
||||
openSet.push(neighbor);
|
||||
cameFrom.set(neighbor, current);
|
||||
gScore.set(neighbor, tentativeGScore);
|
||||
fScore.set(
|
||||
neighbor,
|
||||
neighborGScore +
|
||||
heuristicCostEstimate({
|
||||
from: current,
|
||||
to: neighbor,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
})
|
||||
);
|
||||
}
|
||||
}
|
||||
return [start, end];
|
||||
};
|
||||
|
||||
const buildPath = (
|
||||
cameFrom: Map<ControlPoint, ControlPoint>,
|
||||
current: ControlPoint
|
||||
): ControlPoint[] => {
|
||||
const path = [current];
|
||||
|
||||
let previous = cameFrom.get(current);
|
||||
while (previous) {
|
||||
path.push(previous);
|
||||
previous = cameFrom.get(previous);
|
||||
}
|
||||
|
||||
return path.reverse();
|
||||
};
|
||||
|
||||
interface GetNextNeighborPointsParams {
|
||||
points: ControlPoint[];
|
||||
previous?: ControlPoint;
|
||||
current: ControlPoint;
|
||||
sourceRect: NodeRect;
|
||||
targetRect: NodeRect;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the set of possible neighboring points for the current control point
|
||||
*
|
||||
* - The line is in a horizontal or vertical direction
|
||||
* - The line does not intersect with the two end nodes
|
||||
* - The line does not overlap with the previous line segment in reverse direction
|
||||
*/
|
||||
export const getNextNeighborPoints = ({
|
||||
points,
|
||||
previous,
|
||||
current,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
}: GetNextNeighborPointsParams): ControlPoint[] => {
|
||||
return points.filter((p) => {
|
||||
if (p === current) {
|
||||
return false;
|
||||
}
|
||||
// The connection is in the horizontal or vertical direction
|
||||
const rightDirection = p.x === current.x || p.y === current.y;
|
||||
// Reverse direction with the previous line segment (overlap)
|
||||
const reverseDirection = previous
|
||||
? areLinesReverseDirection(previous, current, current, p)
|
||||
: false;
|
||||
return (
|
||||
rightDirection && // The line is in a horizontal or vertical direction
|
||||
!reverseDirection && // The line does not overlap with the previous line segment in reverse direction
|
||||
!isSegmentCrossingRect(p, current, sourceRect) && // Does not intersect with sourceNode
|
||||
!isSegmentCrossingRect(p, current, targetRect) // Does not intersect with targetNode
|
||||
);
|
||||
});
|
||||
};
|
||||
|
||||
interface HeuristicCostParams {
|
||||
from: ControlPoint;
|
||||
to: ControlPoint;
|
||||
start: ControlPoint;
|
||||
end: ControlPoint;
|
||||
source: ControlPoint;
|
||||
target: ControlPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* Connection point distance loss function
|
||||
*
|
||||
* - The smaller the sum of distances, the better
|
||||
* - The closer the start and end line segments are in direction, the better
|
||||
* - The better the inflection point is symmetric or centered in the line segment
|
||||
*/
|
||||
const heuristicCostEstimate = ({
|
||||
from,
|
||||
to,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
}: HeuristicCostParams): number => {
|
||||
const base = estimateDistance(to, start) + estimateDistance(to, end);
|
||||
const startCost = isEqualPoint(from, start)
|
||||
? areLinesSameDirection(from, to, source, start)
|
||||
? -base / 2
|
||||
: 0
|
||||
: 0;
|
||||
const endCost = isEqualPoint(to, end)
|
||||
? areLinesSameDirection(from, to, end, target)
|
||||
? -base / 2
|
||||
: 0
|
||||
: 0;
|
||||
return base + startCost + endCost;
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the estimated distance between two points
|
||||
*
|
||||
* Manhattan distance: the sum of horizontal and vertical distances, faster calculation speed
|
||||
*/
|
||||
const estimateDistance = (p1: ControlPoint, p2: ControlPoint): number =>
|
||||
Math.abs(p1.x - p2.x) + Math.abs(p1.y - p2.y);
|
||||
|
|
@ -1,127 +0,0 @@
|
|||
import { areLinesSameDirection, isHorizontalFromPosition } from "../edge";
|
||||
import {
|
||||
ControlPoint,
|
||||
HandlePosition,
|
||||
NodeRect,
|
||||
getCenterPoints,
|
||||
getExpandedRect,
|
||||
getOffsetPoint,
|
||||
getSidesFromPoints,
|
||||
getVerticesFromRectVertex,
|
||||
optimizeInputPoints,
|
||||
reducePoints,
|
||||
} from "../point";
|
||||
import { getAStarPath } from "./a-star";
|
||||
import { getSimplePath } from "./simple";
|
||||
|
||||
export interface GetControlPointsParams {
|
||||
source: HandlePosition;
|
||||
target: HandlePosition;
|
||||
sourceRect: NodeRect;
|
||||
targetRect: NodeRect;
|
||||
/**
|
||||
* Minimum spacing between edges and nodes
|
||||
*/
|
||||
offset: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate control points on the optimal path of an edge.
|
||||
*
|
||||
* Reference article: https://juejin.cn/post/6942727734518874142
|
||||
*/
|
||||
export const getControlPoints = ({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
offset = 20,
|
||||
}: GetControlPointsParams) => {
|
||||
const source: ControlPoint = oldSource;
|
||||
const target: ControlPoint = oldTarget;
|
||||
let edgePoints: ControlPoint[] = [];
|
||||
let optimized: ReturnType<typeof optimizeInputPoints>;
|
||||
|
||||
// 1. Find the starting and ending points after applying the offset
|
||||
const sourceOffset = getOffsetPoint(oldSource, offset);
|
||||
const targetOffset = getOffsetPoint(oldTarget, offset);
|
||||
const expandedSource = getExpandedRect(sourceRect, offset);
|
||||
const expandedTarget = getExpandedRect(targetRect, offset);
|
||||
|
||||
// 2. Determine if the two Rects are relatively close or should directly connected
|
||||
const minOffset = 2 * offset + 10;
|
||||
const isHorizontalLayout = isHorizontalFromPosition(oldSource.position);
|
||||
const isSameDirection = areLinesSameDirection(
|
||||
source,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
target
|
||||
);
|
||||
const sides = getSidesFromPoints([
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
]);
|
||||
const isTooClose = isHorizontalLayout
|
||||
? sides.right - sides.left < minOffset
|
||||
: sides.bottom - sides.top < minOffset;
|
||||
const isDirectConnect = isHorizontalLayout
|
||||
? isSameDirection && source.x < target.x
|
||||
: isSameDirection && source.y < target.y;
|
||||
|
||||
if (isTooClose || isDirectConnect) {
|
||||
// 3. If the two Rects are relatively close or directly connected, return a simple Path
|
||||
edgePoints = getSimplePath({
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
isDirectConnect,
|
||||
});
|
||||
optimized = optimizeInputPoints({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
edgePoints,
|
||||
});
|
||||
edgePoints = optimized.edgePoints;
|
||||
} else {
|
||||
// 3. Find the vertices of the two expanded Rects
|
||||
edgePoints = [
|
||||
...getVerticesFromRectVertex(expandedSource, targetOffset),
|
||||
...getVerticesFromRectVertex(expandedTarget, sourceOffset),
|
||||
];
|
||||
// 4. Find possible midpoints and intersections
|
||||
edgePoints = edgePoints.concat(
|
||||
getCenterPoints({
|
||||
source: expandedSource,
|
||||
target: expandedTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
})
|
||||
);
|
||||
// 5. Merge nearby coordinate points and remove duplicate coordinate points
|
||||
optimized = optimizeInputPoints({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
edgePoints,
|
||||
});
|
||||
// 6. Find the optimal path
|
||||
edgePoints = getAStarPath({
|
||||
points: optimized.edgePoints,
|
||||
source: optimized.source,
|
||||
target: optimized.target,
|
||||
sourceRect: getExpandedRect(sourceRect, offset / 2),
|
||||
targetRect: getExpandedRect(targetRect, offset / 2),
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
points: reducePoints([optimized.source, ...edgePoints, optimized.target]),
|
||||
inputPoints: optimized.edgePoints,
|
||||
};
|
||||
};
|
||||
|
|
@ -1,113 +0,0 @@
|
|||
import { uuid } from "@/utils/uuid";
|
||||
|
||||
import { LayoutDirection } from "../../node";
|
||||
import { ControlPoint, isInLine, isOnLine } from "../point";
|
||||
|
||||
interface GetSimplePathParams {
|
||||
isDirectConnect?: boolean;
|
||||
source: ControlPoint;
|
||||
target: ControlPoint;
|
||||
sourceOffset: ControlPoint;
|
||||
targetOffset: ControlPoint;
|
||||
}
|
||||
|
||||
const getLineDirection = (
|
||||
start: ControlPoint,
|
||||
end: ControlPoint
|
||||
): LayoutDirection => (start.x === end.x ? "vertical" : "horizontal");
|
||||
|
||||
/**
|
||||
* When two nodes are too close, use the simple path
|
||||
*
|
||||
* @returns Control points including sourceOffset and targetOffset (not including source and target points).
|
||||
*/
|
||||
export const getSimplePath = ({
|
||||
isDirectConnect,
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
}: GetSimplePathParams): ControlPoint[] => {
|
||||
const points: ControlPoint[] = [];
|
||||
const sourceDirection = getLineDirection(source, sourceOffset);
|
||||
const targetDirection = getLineDirection(target, targetOffset);
|
||||
const isHorizontalLayout = sourceDirection === "horizontal";
|
||||
if (isDirectConnect) {
|
||||
// Direct connection, return a simple Path
|
||||
if (isHorizontalLayout) {
|
||||
if (sourceOffset.x <= targetOffset.x) {
|
||||
const centerX = (sourceOffset.x + targetOffset.x) / 2;
|
||||
return [
|
||||
{ id: uuid(), x: centerX, y: sourceOffset.y },
|
||||
{ id: uuid(), x: centerX, y: targetOffset.y },
|
||||
];
|
||||
} else {
|
||||
const centerY = (sourceOffset.y + targetOffset.y) / 2;
|
||||
return [
|
||||
sourceOffset,
|
||||
{ id: uuid(), x: sourceOffset.x, y: centerY },
|
||||
{ id: uuid(), x: targetOffset.x, y: centerY },
|
||||
targetOffset,
|
||||
];
|
||||
}
|
||||
} else {
|
||||
if (sourceOffset.y <= targetOffset.y) {
|
||||
const centerY = (sourceOffset.y + targetOffset.y) / 2;
|
||||
return [
|
||||
{ id: uuid(), x: sourceOffset.x, y: centerY },
|
||||
{ id: uuid(), x: targetOffset.x, y: centerY },
|
||||
];
|
||||
} else {
|
||||
const centerX = (sourceOffset.x + targetOffset.x) / 2;
|
||||
return [
|
||||
sourceOffset,
|
||||
{ id: uuid(), x: centerX, y: sourceOffset.y },
|
||||
{ id: uuid(), x: centerX, y: targetOffset.y },
|
||||
targetOffset,
|
||||
];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sourceDirection === targetDirection) {
|
||||
// Same direction, add two points, two endpoints of parallel lines at half the vertical distance
|
||||
if (source.y === sourceOffset.y) {
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: sourceOffset.x,
|
||||
y: (sourceOffset.y + targetOffset.y) / 2,
|
||||
});
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: targetOffset.x,
|
||||
y: (sourceOffset.y + targetOffset.y) / 2,
|
||||
});
|
||||
} else {
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: (sourceOffset.x + targetOffset.x) / 2,
|
||||
y: sourceOffset.y,
|
||||
});
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: (sourceOffset.x + targetOffset.x) / 2,
|
||||
y: targetOffset.y,
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// Different directions, add one point, ensure it's not on the current line segment (to avoid overlap), and there are no turns
|
||||
let point = { id: uuid(), x: sourceOffset.x, y: targetOffset.y };
|
||||
const inStart = isInLine(point, source, sourceOffset);
|
||||
const inEnd = isInLine(point, target, targetOffset);
|
||||
if (inStart || inEnd) {
|
||||
point = { id: uuid(), x: targetOffset.x, y: sourceOffset.y };
|
||||
} else {
|
||||
const onStart = isOnLine(point, source, sourceOffset);
|
||||
const onEnd = isOnLine(point, target, targetOffset);
|
||||
if (onStart && onEnd) {
|
||||
point = { id: uuid(), x: targetOffset.x, y: sourceOffset.y };
|
||||
}
|
||||
}
|
||||
points.push(point);
|
||||
}
|
||||
return [sourceOffset, ...points, targetOffset];
|
||||
};
|
||||
|
|
@ -1,248 +0,0 @@
|
|||
import { areLinesReverseDirection, areLinesSameDirection } from "../edge";
|
||||
import {
|
||||
ControlPoint,
|
||||
NodeRect,
|
||||
isEqualPoint,
|
||||
isSegmentCrossingRect,
|
||||
} from "../point";
|
||||
|
||||
interface GetAStarPathParams {
|
||||
/**
|
||||
* Collection of potential control points between `sourceOffset` and `targetOffset`, excluding the `source` and `target` points.
|
||||
*/
|
||||
points: ControlPoint[];
|
||||
source: ControlPoint;
|
||||
target: ControlPoint;
|
||||
/**
|
||||
* Node size information for the `source` and `target`, used to optimize edge routing without intersecting nodes.
|
||||
*/
|
||||
sourceRect: NodeRect;
|
||||
targetRect: NodeRect;
|
||||
}
|
||||
|
||||
/**
|
||||
* Utilizes the [A\* search algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) combined with
|
||||
* [Manhattan Distance](https://simple.wikipedia.org/wiki/Manhattan_distance) to find the optimal path for edges.
|
||||
*
|
||||
* @returns Control points including sourceOffset and targetOffset (not including source and target points).
|
||||
*/
|
||||
export const getAStarPath = ({
|
||||
points,
|
||||
source,
|
||||
target,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
}: GetAStarPathParams): ControlPoint[] => {
|
||||
if (points.length < 3) {
|
||||
return points;
|
||||
}
|
||||
const start = points[0];
|
||||
const end = points[points.length - 1];
|
||||
const openSet: ControlPoint[] = [start];
|
||||
const closedSet: Set<ControlPoint> = new Set();
|
||||
const cameFrom: Map<ControlPoint, ControlPoint> = new Map();
|
||||
const gScore: Map<ControlPoint, number> = new Map().set(start, 0);
|
||||
const fScore: Map<ControlPoint, number> = new Map().set(
|
||||
start,
|
||||
heuristicCostEstimate({
|
||||
from: start,
|
||||
to: start,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
})
|
||||
);
|
||||
|
||||
while (openSet.length) {
|
||||
let current;
|
||||
let currentIdx;
|
||||
let lowestFScore = Infinity;
|
||||
openSet.forEach((p, idx) => {
|
||||
const score = fScore.get(p) ?? 0;
|
||||
if (score < lowestFScore) {
|
||||
lowestFScore = score;
|
||||
current = p;
|
||||
currentIdx = idx;
|
||||
}
|
||||
});
|
||||
|
||||
if (!current) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (current === end) {
|
||||
return buildPath(cameFrom, current);
|
||||
}
|
||||
|
||||
openSet.splice(currentIdx!, 1);
|
||||
closedSet.add(current);
|
||||
|
||||
const curFScore = fScore.get(current) ?? 0;
|
||||
const previous = cameFrom.get(current);
|
||||
const neighbors = getNextNeighborPoints({
|
||||
points,
|
||||
previous,
|
||||
current,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
});
|
||||
for (const neighbor of neighbors) {
|
||||
if (closedSet.has(neighbor)) {
|
||||
continue;
|
||||
}
|
||||
const neighborGScore = gScore.get(neighbor) ?? 0;
|
||||
const tentativeGScore = curFScore + estimateDistance(current, neighbor);
|
||||
if (openSet.includes(neighbor) && tentativeGScore >= neighborGScore) {
|
||||
continue;
|
||||
}
|
||||
openSet.push(neighbor);
|
||||
cameFrom.set(neighbor, current);
|
||||
gScore.set(neighbor, tentativeGScore);
|
||||
fScore.set(
|
||||
neighbor,
|
||||
neighborGScore +
|
||||
heuristicCostEstimate({
|
||||
from: current,
|
||||
to: neighbor,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
})
|
||||
);
|
||||
}
|
||||
}
|
||||
return [start, end];
|
||||
};
|
||||
|
||||
const buildPath = (
|
||||
cameFrom: Map<ControlPoint, ControlPoint>,
|
||||
current: ControlPoint
|
||||
): ControlPoint[] => {
|
||||
const path = [current];
|
||||
|
||||
let previous = cameFrom.get(current);
|
||||
while (previous) {
|
||||
path.push(previous);
|
||||
previous = cameFrom.get(previous);
|
||||
}
|
||||
|
||||
return path.reverse();
|
||||
};
|
||||
|
||||
interface GetNextNeighborPointsParams {
|
||||
points: ControlPoint[];
|
||||
previous?: ControlPoint;
|
||||
current: ControlPoint;
|
||||
sourceRect: NodeRect;
|
||||
targetRect: NodeRect;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the set of possible neighboring points for the current control point
|
||||
*
|
||||
* - The line is in a horizontal or vertical direction
|
||||
* - The line does not intersect with the two end nodes
|
||||
* - The line does not overlap with the previous line segment in reverse direction
|
||||
*/
|
||||
export const getNextNeighborPoints = ({
|
||||
points,
|
||||
previous,
|
||||
current,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
}: GetNextNeighborPointsParams): ControlPoint[] => {
|
||||
return points.filter((p) => {
|
||||
if (p === current) {
|
||||
return false;
|
||||
}
|
||||
// The connection is in the horizontal or vertical direction
|
||||
const rightDirection = p.x === current.x || p.y === current.y;
|
||||
// Reverse direction with the previous line segment (overlap)
|
||||
const reverseDirection = previous
|
||||
? areLinesReverseDirection(previous, current, current, p)
|
||||
: false;
|
||||
return (
|
||||
rightDirection && // The line is in a horizontal or vertical direction
|
||||
!reverseDirection && // The line does not overlap with the previous line segment in reverse direction
|
||||
!isSegmentCrossingRect(p, current, sourceRect) && // Does not intersect with sourceNode
|
||||
!isSegmentCrossingRect(p, current, targetRect) // Does not intersect with targetNode
|
||||
);
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* 路径规划所需的启发式代价计算参数接口
|
||||
* 包含了计算路径代价所需的所有控制点信息:
|
||||
* - from/to: 当前路径段的起点和终点
|
||||
* - start/end: 整条路径的起点和终点
|
||||
* - source/target: 连接的源节点和目标节点位置
|
||||
*/
|
||||
interface HeuristicCostParams {
|
||||
from: ControlPoint; // 当前路径段的起点
|
||||
to: ControlPoint; // 当前路径段的终点
|
||||
start: ControlPoint; // 整条路径的起始点
|
||||
end: ControlPoint; // 整条路径的终点
|
||||
source: ControlPoint; // 源节点的连接点
|
||||
target: ControlPoint; // 目标节点的连接点
|
||||
}
|
||||
|
||||
/**
|
||||
* 启发式路径代价估算函数
|
||||
*
|
||||
* 该函数通过多个因素综合评估路径的优劣程度:
|
||||
* 1. 基础代价: 当前点到起点和终点的曼哈顿距离之和
|
||||
* 2. 起点优化: 如果是起始段,判断方向一致性给予奖励
|
||||
* 3. 终点优化: 如果是结束段,判断方向一致性给予奖励
|
||||
*
|
||||
* 优化目标:
|
||||
* - 减少路径总长度
|
||||
* - 保持路径走向的连续性
|
||||
* - 使拐点在路径中更均匀分布
|
||||
*
|
||||
* @param params 包含所有必要控制点的参数对象
|
||||
* @returns 计算得到的启发式代价值,值越小路径越优
|
||||
*/
|
||||
const heuristicCostEstimate = ({
|
||||
from,
|
||||
to,
|
||||
start,
|
||||
end,
|
||||
source,
|
||||
target,
|
||||
}: HeuristicCostParams): number => {
|
||||
// 计算基础代价 - 到起点和终点的距离之和
|
||||
const base = estimateDistance(to, start) + estimateDistance(to, end);
|
||||
|
||||
// 起点方向优化 - 如果是起始段且方向一致,给予奖励
|
||||
const startCost = isEqualPoint(from, start)
|
||||
? areLinesSameDirection(from, to, source, start)
|
||||
? -base / 2 // 方向一致时减少代价
|
||||
: 0
|
||||
: 0;
|
||||
|
||||
// 终点方向优化 - 如果是结束段且方向一致,给予奖励
|
||||
const endCost = isEqualPoint(to, end)
|
||||
? areLinesSameDirection(from, to, end, target)
|
||||
? -base / 2 // 方向一致时减少代价
|
||||
: 0
|
||||
: 0;
|
||||
|
||||
return base + startCost + endCost;
|
||||
};
|
||||
|
||||
/**
|
||||
* 计算两点间的估计距离
|
||||
*
|
||||
* 采用曼哈顿距离(Manhattan distance)计算:
|
||||
* - 只计算水平和垂直方向的距离之和
|
||||
* - 避免使用欧几里得距离的开方运算
|
||||
* - 在网格化的路径规划中性能更优
|
||||
*
|
||||
* @param p1 第一个控制点
|
||||
* @param p2 第二个控制点
|
||||
* @returns 两点间的曼哈顿距离
|
||||
*/
|
||||
const estimateDistance = (p1: ControlPoint, p2: ControlPoint): number =>
|
||||
Math.abs(p1.x - p2.x) + Math.abs(p1.y - p2.y);
|
||||
|
|
@ -1,142 +0,0 @@
|
|||
import { areLinesSameDirection, isHorizontalFromPosition } from "../edge";
|
||||
import {
|
||||
ControlPoint,
|
||||
HandlePosition,
|
||||
NodeRect,
|
||||
getCenterPoints,
|
||||
getExpandedRect,
|
||||
getOffsetPoint,
|
||||
getSidesFromPoints,
|
||||
getVerticesFromRectVertex,
|
||||
optimizeInputPoints,
|
||||
reducePoints,
|
||||
} from "../point";
|
||||
import { getAStarPath } from "./a-star";
|
||||
import { getSimplePath } from "./simple";
|
||||
|
||||
/**
|
||||
* 边缘控制点计算模块
|
||||
* 用于计算图形边缘连接线的控制点,以实现平滑的连接效果
|
||||
* 主要应用于流程图、思维导图等需要节点间连线的场景
|
||||
*/
|
||||
|
||||
/**
|
||||
* 控制点计算所需的输入参数接口
|
||||
*/
|
||||
export interface GetControlPointsParams {
|
||||
source: HandlePosition; // 起始连接点位置
|
||||
target: HandlePosition; // 目标连接点位置
|
||||
sourceRect: NodeRect; // 起始节点的矩形区域
|
||||
targetRect: NodeRect; // 目标节点的矩形区域
|
||||
/**
|
||||
* 边缘与节点之间的最小间距
|
||||
* @default 20
|
||||
*/
|
||||
offset: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算两个节点之间连接线的控制点
|
||||
* @param params 控制点计算参数
|
||||
* @returns 返回优化后的路径点和输入点集合
|
||||
*/
|
||||
export const getControlPoints = ({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
offset = 20,
|
||||
}: GetControlPointsParams) => {
|
||||
const source: ControlPoint = oldSource;
|
||||
const target: ControlPoint = oldTarget;
|
||||
let edgePoints: ControlPoint[] = [];
|
||||
let optimized: ReturnType<typeof optimizeInputPoints>;
|
||||
|
||||
// 1. 计算考虑偏移量后的起始和结束点
|
||||
const sourceOffset = getOffsetPoint(oldSource, offset);
|
||||
const targetOffset = getOffsetPoint(oldTarget, offset);
|
||||
const expandedSource = getExpandedRect(sourceRect, offset);
|
||||
const expandedTarget = getExpandedRect(targetRect, offset);
|
||||
|
||||
// 2. 判断两个矩形是否靠得较近或应该直接连接
|
||||
const minOffset = 2 * offset + 10; // 最小间距阈值
|
||||
const isHorizontalLayout = isHorizontalFromPosition(oldSource.position); // 是否为水平布局
|
||||
const isSameDirection = areLinesSameDirection(
|
||||
source,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
target
|
||||
); // 判断是否同向
|
||||
const sides = getSidesFromPoints([
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
]); // 获取边界信息
|
||||
|
||||
// 判断节点是否过近
|
||||
const isTooClose = isHorizontalLayout
|
||||
? sides.right - sides.left < minOffset
|
||||
: sides.bottom - sides.top < minOffset;
|
||||
// 判断是否可以直接连接
|
||||
const isDirectConnect = isHorizontalLayout
|
||||
? isSameDirection && source.x < target.x
|
||||
: isSameDirection && source.y < target.y;
|
||||
|
||||
if (isTooClose || isDirectConnect) {
|
||||
// 3. 如果节点较近或可直接连接,返回简单路径
|
||||
edgePoints = getSimplePath({
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
isDirectConnect,
|
||||
});
|
||||
// 优化输入点
|
||||
optimized = optimizeInputPoints({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
edgePoints,
|
||||
});
|
||||
edgePoints = optimized.edgePoints;
|
||||
} else {
|
||||
// 3. 获取两个扩展矩形的顶点
|
||||
edgePoints = [
|
||||
...getVerticesFromRectVertex(expandedSource, targetOffset),
|
||||
...getVerticesFromRectVertex(expandedTarget, sourceOffset),
|
||||
];
|
||||
// 4. 计算可能的中点和交点
|
||||
edgePoints = edgePoints.concat(
|
||||
getCenterPoints({
|
||||
source: expandedSource,
|
||||
target: expandedTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
})
|
||||
);
|
||||
// 5. 合并临近坐标点并去除重复点
|
||||
optimized = optimizeInputPoints({
|
||||
source: oldSource,
|
||||
target: oldTarget,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
edgePoints,
|
||||
});
|
||||
// 6. 使用A*算法寻找最优路径
|
||||
edgePoints = getAStarPath({
|
||||
points: optimized.edgePoints,
|
||||
source: optimized.source,
|
||||
target: optimized.target,
|
||||
sourceRect: getExpandedRect(sourceRect, offset / 2),
|
||||
targetRect: getExpandedRect(targetRect, offset / 2),
|
||||
});
|
||||
}
|
||||
|
||||
// 返回简化后的路径点和输入点集合
|
||||
return {
|
||||
points: reducePoints([optimized.source, ...edgePoints, optimized.target]),
|
||||
inputPoints: optimized.edgePoints,
|
||||
};
|
||||
};
|
||||
|
|
@ -1,112 +0,0 @@
|
|||
import { uuid } from "../../../utils/uuid";
|
||||
import { LayoutDirection } from "../../node";
|
||||
import { ControlPoint, isInLine, isOnLine } from "../point";
|
||||
|
||||
interface GetSimplePathParams {
|
||||
isDirectConnect?: boolean;
|
||||
source: ControlPoint;
|
||||
target: ControlPoint;
|
||||
sourceOffset: ControlPoint;
|
||||
targetOffset: ControlPoint;
|
||||
}
|
||||
|
||||
const getLineDirection = (
|
||||
start: ControlPoint,
|
||||
end: ControlPoint
|
||||
): LayoutDirection => (start.x === end.x ? "vertical" : "horizontal");
|
||||
|
||||
/**
|
||||
* When two nodes are too close, use the simple path
|
||||
*
|
||||
* @returns Control points including sourceOffset and targetOffset (not including source and target points).
|
||||
*/
|
||||
export const getSimplePath = ({
|
||||
isDirectConnect,
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
}: GetSimplePathParams): ControlPoint[] => {
|
||||
const points: ControlPoint[] = [];
|
||||
const sourceDirection = getLineDirection(source, sourceOffset);
|
||||
const targetDirection = getLineDirection(target, targetOffset);
|
||||
const isHorizontalLayout = sourceDirection === "horizontal";
|
||||
if (isDirectConnect) {
|
||||
// Direct connection, return a simple Path
|
||||
if (isHorizontalLayout) {
|
||||
if (sourceOffset.x <= targetOffset.x) {
|
||||
const centerX = (sourceOffset.x + targetOffset.x) / 2;
|
||||
return [
|
||||
{ id: uuid(), x: centerX, y: sourceOffset.y },
|
||||
{ id: uuid(), x: centerX, y: targetOffset.y },
|
||||
];
|
||||
} else {
|
||||
const centerY = (sourceOffset.y + targetOffset.y) / 2;
|
||||
return [
|
||||
sourceOffset,
|
||||
{ id: uuid(), x: sourceOffset.x, y: centerY },
|
||||
{ id: uuid(), x: targetOffset.x, y: centerY },
|
||||
targetOffset,
|
||||
];
|
||||
}
|
||||
} else {
|
||||
if (sourceOffset.y <= targetOffset.y) {
|
||||
const centerY = (sourceOffset.y + targetOffset.y) / 2;
|
||||
return [
|
||||
{ id: uuid(), x: sourceOffset.x, y: centerY },
|
||||
{ id: uuid(), x: targetOffset.x, y: centerY },
|
||||
];
|
||||
} else {
|
||||
const centerX = (sourceOffset.x + targetOffset.x) / 2;
|
||||
return [
|
||||
sourceOffset,
|
||||
{ id: uuid(), x: centerX, y: sourceOffset.y },
|
||||
{ id: uuid(), x: centerX, y: targetOffset.y },
|
||||
targetOffset,
|
||||
];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sourceDirection === targetDirection) {
|
||||
// Same direction, add two points, two endpoints of parallel lines at half the vertical distance
|
||||
if (source.y === sourceOffset.y) {
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: sourceOffset.x,
|
||||
y: (sourceOffset.y + targetOffset.y) / 2,
|
||||
});
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: targetOffset.x,
|
||||
y: (sourceOffset.y + targetOffset.y) / 2,
|
||||
});
|
||||
} else {
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: (sourceOffset.x + targetOffset.x) / 2,
|
||||
y: sourceOffset.y,
|
||||
});
|
||||
points.push({
|
||||
id: uuid(),
|
||||
x: (sourceOffset.x + targetOffset.x) / 2,
|
||||
y: targetOffset.y,
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// Different directions, add one point, ensure it's not on the current line segment (to avoid overlap), and there are no turns
|
||||
let point = { id: uuid(), x: sourceOffset.x, y: targetOffset.y };
|
||||
const inStart = isInLine(point, source, sourceOffset);
|
||||
const inEnd = isInLine(point, target, targetOffset);
|
||||
if (inStart || inEnd) {
|
||||
point = { id: uuid(), x: targetOffset.x, y: sourceOffset.y };
|
||||
} else {
|
||||
const onStart = isOnLine(point, source, sourceOffset);
|
||||
const onEnd = isOnLine(point, target, targetOffset);
|
||||
if (onStart && onEnd) {
|
||||
point = { id: uuid(), x: targetOffset.x, y: sourceOffset.y };
|
||||
}
|
||||
}
|
||||
points.push(point);
|
||||
}
|
||||
return [sourceOffset, ...points, targetOffset];
|
||||
};
|
||||
|
|
@ -1,389 +0,0 @@
|
|||
import { Position, XYPosition } from "@xyflow/react";
|
||||
import { ControlPoint, HandlePosition } from "./point";
|
||||
import { uuid } from "../../utils/uuid";
|
||||
|
||||
export interface ILine {
|
||||
start: ControlPoint;
|
||||
end: ControlPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断给定位置是否为水平方向
|
||||
* @param position - 位置枚举值
|
||||
* @returns 如果是左侧或右侧位置则返回true,否则返回false
|
||||
*/
|
||||
export const isHorizontalFromPosition = (position: Position) => {
|
||||
return [Position.Left, Position.Right].includes(position);
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断连接是否为反向
|
||||
* 在图形布局中,通常希望连线从左到右或从上到下。当连线方向与此相反时,即为反向连接
|
||||
* @param props - 包含源点和目标点位置信息的对象
|
||||
* @param props.source - 源节点的位置信息
|
||||
* @param props.target - 目标节点的位置信息
|
||||
* @returns 如果是反向连接则返回true,否则返回false
|
||||
*/
|
||||
export const isConnectionBackward = (props: {
|
||||
source: HandlePosition;
|
||||
target: HandlePosition;
|
||||
}) => {
|
||||
const { source, target } = props;
|
||||
// 判断是水平还是垂直方向的连接
|
||||
const isHorizontal = isHorizontalFromPosition(source.position);
|
||||
let isBackward = false;
|
||||
|
||||
// 水平方向时,如果源点x坐标大于目标点,则为反向
|
||||
if (isHorizontal) {
|
||||
if (source.x > target.x) {
|
||||
isBackward = true;
|
||||
}
|
||||
}
|
||||
// 垂直方向时,如果源点y坐标大于目标点,则为反向
|
||||
else {
|
||||
if (source.y > target.y) {
|
||||
isBackward = true;
|
||||
}
|
||||
}
|
||||
return isBackward;
|
||||
};
|
||||
|
||||
/**
|
||||
* 计算两点之间的欧几里得距离
|
||||
* 使用勾股定理(Math.hypot)计算两点间的直线距离
|
||||
* @param p1 - 第一个控制点
|
||||
* @param p2 - 第二个控制点
|
||||
* @returns 两点间的距离
|
||||
*/
|
||||
export const distance = (p1: ControlPoint, p2: ControlPoint) => {
|
||||
return Math.hypot(p2.x - p1.x, p2.y - p1.y);
|
||||
};
|
||||
|
||||
/**
|
||||
* 计算线段的中点坐标
|
||||
* 通过取两端点坐标的算术平均值来确定中点位置
|
||||
* @param p1 - 第一个控制点
|
||||
* @param p2 - 第二个控制点
|
||||
* @returns 包含中点坐标和唯一标识的控制点对象
|
||||
*/
|
||||
export const getLineCenter = (
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint
|
||||
): ControlPoint => {
|
||||
return {
|
||||
id: uuid(),
|
||||
x: (p1.x + p2.x) / 2, // x坐标取两端点x坐标的平均值
|
||||
y: (p1.y + p2.y) / 2, // y坐标取两端点y坐标的平均值
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断点是否在线段上
|
||||
*
|
||||
* @description
|
||||
* 该函数用于检测给定的点是否位于由两个控制点构成的线段上。
|
||||
* 判断逻辑分为两种情况:
|
||||
* 1. 垂直线段: 当起点和终点的x坐标相同时,判断目标点的x坐标是否等于线段x坐标,且y坐标在线段y坐标范围内
|
||||
* 2. 水平线段: 当起点和终点的y坐标相同时,判断目标点的y坐标是否等于线段y坐标,且x坐标在线段x坐标范围内
|
||||
*
|
||||
* @param start - 线段起点坐标
|
||||
* @param end - 线段终点坐标
|
||||
* @param p - 待检测点的坐标
|
||||
* @returns {boolean} 如果点在线段上返回true,否则返回false
|
||||
*/
|
||||
export const isLineContainsPoint = (
|
||||
start: ControlPoint,
|
||||
end: ControlPoint,
|
||||
p: ControlPoint
|
||||
) => {
|
||||
return (
|
||||
// 判断垂直线段
|
||||
(start.x === end.x && // 起点终点x坐标相同
|
||||
p.x === start.x && // 目标点x坐标与线段相同
|
||||
p.y <= Math.max(start.y, end.y) && // 目标点y坐标不超过线段y坐标最大值
|
||||
p.y >= Math.min(start.y, end.y)) || // 目标点y坐标不小于线段y坐标最小值
|
||||
// 判断水平线段
|
||||
(start.y === end.y && // 起点终点y坐标相同
|
||||
p.y === start.y && // 目标点y坐标与线段相同
|
||||
p.x <= Math.max(start.x, end.x) && // 目标点x坐标不超过线段x坐标最大值
|
||||
p.x >= Math.min(start.x, end.x)) // 目标点x坐标不小于线段x坐标最小值
|
||||
);
|
||||
};
|
||||
/**
|
||||
/**
|
||||
* 生成带圆角转角的SVG路径
|
||||
*
|
||||
* 该函数用于在图形编辑器中生成连接两点之间的边线路径。路径具有以下特点:
|
||||
* 1. 两个控制点之间为直线段
|
||||
* 2. 在转折点处生成圆角过渡
|
||||
* 3. 支持垂直和水平方向的转角
|
||||
*
|
||||
* @param points 控制点数组,包含边的起点、终点和中间的转折点
|
||||
* - 至少需要2个点(起点和终点)
|
||||
* - 点的顺序应从输入端点开始到输出端点结束
|
||||
* @param radius 转角处的圆角半径
|
||||
* @returns 返回SVG路径字符串
|
||||
* @throws 当points数组长度小于2时抛出错误
|
||||
*/
|
||||
export function getPathWithRoundCorners(
|
||||
points: ControlPoint[],
|
||||
radius: number
|
||||
): string {
|
||||
if (points.length < 2) {
|
||||
throw new Error("At least 2 points are required.");
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算两条线段交点处的圆角路径
|
||||
* @param center 转折点坐标
|
||||
* @param p1 前一个点的坐标
|
||||
* @param p2 后一个点的坐标
|
||||
* @param radius 圆角半径
|
||||
* @returns SVG路径命令字符串
|
||||
*/
|
||||
function getRoundCorner(
|
||||
center: ControlPoint,
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
radius: number
|
||||
) {
|
||||
const { x, y } = center;
|
||||
|
||||
// 如果两条线段不垂直,则直接返回直线路径
|
||||
if (!areLinesPerpendicular(p1, center, center, p2)) {
|
||||
return `L ${x} ${y}`;
|
||||
}
|
||||
|
||||
// 计算实际可用的圆角半径,取三个值中的最小值:
|
||||
// 1. 与前一个点的距离的一半
|
||||
// 2. 与后一个点的距离的一半
|
||||
// 3. 传入的目标半径
|
||||
const d1 = distance(center, p1);
|
||||
const d2 = distance(center, p2);
|
||||
radius = Math.min(d1 / 2, d2 / 2, radius);
|
||||
|
||||
// 判断第一条线段是否为水平线
|
||||
const isHorizontal = p1.y === y;
|
||||
|
||||
// 根据点的相对位置确定圆角绘制方向
|
||||
const xDir = isHorizontal ? (p1.x < p2.x ? -1 : 1) : p1.x < p2.x ? 1 : -1;
|
||||
const yDir = isHorizontal ? (p1.y < p2.y ? 1 : -1) : p1.y < p2.y ? -1 : 1;
|
||||
|
||||
// 根据线段方向生成不同的圆角路径
|
||||
if (isHorizontal) {
|
||||
return `L ${x + radius * xDir},${y}Q ${x},${y} ${x},${y + radius * yDir}`;
|
||||
}
|
||||
return `L ${x},${y + radius * yDir}Q ${x},${y} ${x + radius * xDir},${y}`;
|
||||
}
|
||||
|
||||
// 构建完整的SVG路径
|
||||
const path: string[] = [];
|
||||
for (let i = 0; i < points.length; i++) {
|
||||
if (i === 0) {
|
||||
// 起点使用移动命令M
|
||||
path.push(`M ${points[i].x} ${points[i].y}`);
|
||||
} else if (i === points.length - 1) {
|
||||
// 终点使用直线命令L
|
||||
path.push(`L ${points[i].x} ${points[i].y}`);
|
||||
} else {
|
||||
// 中间点使用圆角转角
|
||||
path.push(
|
||||
getRoundCorner(points[i], points[i - 1], points[i + 1], radius)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// 将所有路径命令连接成完整的路径字符串
|
||||
return path.join(" ");
|
||||
}
|
||||
/**
|
||||
* 获取折线中最长的线段
|
||||
* @param points 控制点数组,每个点包含x和y坐标
|
||||
* @returns 返回最长线段的起点和终点坐标
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 初始化第一条线段为最长线段
|
||||
* 2. 遍历所有相邻点对,计算线段长度
|
||||
* 3. 如果找到更长的线段,则更新最长线段记录
|
||||
* 4. 返回最长线段的两个端点
|
||||
*/
|
||||
export function getLongestLine(
|
||||
points: ControlPoint[]
|
||||
): [ControlPoint, ControlPoint] {
|
||||
let longestLine: [ControlPoint, ControlPoint] = [points[0], points[1]];
|
||||
let longestDistance = distance(...longestLine);
|
||||
for (let i = 1; i < points.length - 1; i++) {
|
||||
const _distance = distance(points[i], points[i + 1]);
|
||||
if (_distance > longestDistance) {
|
||||
longestDistance = _distance;
|
||||
longestLine = [points[i], points[i + 1]];
|
||||
}
|
||||
}
|
||||
return longestLine;
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算折线上标签的位置
|
||||
* @param points 控制点数组
|
||||
* @param minGap 最小间隔距离,默认为20
|
||||
* @returns 标签的坐标位置
|
||||
*
|
||||
* 计算逻辑:
|
||||
* 1. 如果折线点数为偶数:
|
||||
* - 取中间两个点
|
||||
* - 如果这两点间距大于最小间隔,返回它们的中点
|
||||
* 2. 如果折线点数为奇数或中间段太短:
|
||||
* - 找出最长的线段
|
||||
* - 返回最长线段的中点作为标签位置
|
||||
*/
|
||||
export function getLabelPosition(
|
||||
points: ControlPoint[],
|
||||
minGap = 20
|
||||
): XYPosition {
|
||||
if (points.length % 2 === 0) {
|
||||
const middleP1 = points[points.length / 2 - 1];
|
||||
const middleP2 = points[points.length / 2];
|
||||
if (distance(middleP1, middleP2) > minGap) {
|
||||
return getLineCenter(middleP1, middleP2);
|
||||
}
|
||||
}
|
||||
const [start, end] = getLongestLine(points);
|
||||
return {
|
||||
x: (start.x + end.x) / 2,
|
||||
y: (start.y + end.y) / 2,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断两条线段是否垂直
|
||||
* @param p1,p2 第一条线段的起点和终点
|
||||
* @param p3,p4 第二条线段的起点和终点
|
||||
* @returns 如果两线段垂直则返回true
|
||||
*
|
||||
* 判断依据:
|
||||
* - 假设线段要么水平要么垂直
|
||||
* - 当一条线段水平(y相等)而另一条垂直(x相等)时,两线段垂直
|
||||
*/
|
||||
export function areLinesPerpendicular(
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint,
|
||||
p4: ControlPoint
|
||||
): boolean {
|
||||
return (p1.x === p2.x && p3.y === p4.y) || (p1.y === p2.y && p3.x === p4.x);
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断两条线段是否平行
|
||||
* @param p1,p2 第一条线段的起点和终点
|
||||
* @param p3,p4 第二条线段的起点和终点
|
||||
* @returns 如果两线段平行则返回true
|
||||
*
|
||||
* 判断依据:
|
||||
* - 假设线段要么水平要么垂直
|
||||
* - 当两条线段都是水平的(x相等)或都是垂直的(y相等)时,两线段平行
|
||||
*/
|
||||
export function areLinesParallel(
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint,
|
||||
p4: ControlPoint
|
||||
) {
|
||||
return (p1.x === p2.x && p3.x === p4.x) || (p1.y === p2.y && p3.y === p4.y);
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断两条线段是否同向
|
||||
* @param p1 第一条线段的起点
|
||||
* @param p2 第一条线段的终点
|
||||
* @param p3 第二条线段的起点
|
||||
* @param p4 第二条线段的终点
|
||||
* @returns boolean 如果两线段同向返回true,否则返回false
|
||||
*
|
||||
* 判断逻辑:
|
||||
* 1. 对于水平线段(y坐标相等),判断x方向的变化是否同向
|
||||
* 2. 对于垂直线段(x坐标相等),判断y方向的变化是否同向
|
||||
*/
|
||||
export function areLinesSameDirection(
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint,
|
||||
p4: ControlPoint
|
||||
) {
|
||||
return (
|
||||
// 判断垂直线段是否同向
|
||||
(p1.x === p2.x && p3.x === p4.x && (p1.y - p2.y) * (p3.y - p4.y) > 0) ||
|
||||
// 判断水平线段是否同向
|
||||
(p1.y === p2.y && p3.y === p4.y && (p1.x - p2.x) * (p3.x - p4.x) > 0)
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断两条线段是否反向
|
||||
* @param p1 第一条线段的起点
|
||||
* @param p2 第一条线段的终点
|
||||
* @param p3 第二条线段的起点
|
||||
* @param p4 第二条线段的终点
|
||||
* @returns boolean 如果两线段反向返回true,否则返回false
|
||||
*
|
||||
* 判断逻辑:
|
||||
* 1. 对于水平线段(y坐标相等),判断x方向的变化是否反向
|
||||
* 2. 对于垂直线段(x坐标相等),判断y方向的变化是否反向
|
||||
*/
|
||||
export function areLinesReverseDirection(
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint,
|
||||
p4: ControlPoint
|
||||
) {
|
||||
return (
|
||||
// 判断垂直线段是否反向
|
||||
(p1.x === p2.x && p3.x === p4.x && (p1.y - p2.y) * (p3.y - p4.y) < 0) ||
|
||||
// 判断水平线段是否反向
|
||||
(p1.y === p2.y && p3.y === p4.y && (p1.x - p2.x) * (p3.x - p4.x) < 0)
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算两条线段之间的夹角
|
||||
* @param p1 第一条线段的起点
|
||||
* @param p2 第一条线段的终点
|
||||
* @param p3 第二条线段的起点
|
||||
* @param p4 第二条线段的终点
|
||||
* @returns number 两线段之间的夹角(单位:度)
|
||||
*
|
||||
* 计算步骤:
|
||||
* 1. 计算两个向量
|
||||
* 2. 计算向量的点积
|
||||
* 3. 计算向量的模长
|
||||
* 4. 使用反余弦函数计算弧度
|
||||
* 5. 将弧度转换为角度
|
||||
*/
|
||||
export function getAngleBetweenLines(
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint,
|
||||
p4: ControlPoint
|
||||
) {
|
||||
// 计算两条线段对应的向量
|
||||
const v1 = { x: p2.x - p1.x, y: p2.y - p1.y };
|
||||
const v2 = { x: p4.x - p3.x, y: p4.y - p3.y };
|
||||
|
||||
// 计算向量的点积
|
||||
const dotProduct = v1.x * v2.x + v1.y * v2.y;
|
||||
|
||||
// 计算两个向量的模长
|
||||
const magnitude1 = Math.sqrt(v1.x ** 2 + v1.y ** 2);
|
||||
const magnitude2 = Math.sqrt(v2.x ** 2 + v2.y ** 2);
|
||||
|
||||
// 计算夹角的余弦值
|
||||
const cosine = dotProduct / (magnitude1 * magnitude2);
|
||||
|
||||
// 使用反余弦函数计算弧度
|
||||
const angleInRadians = Math.acos(cosine);
|
||||
|
||||
// 将弧度转换为角度并返回
|
||||
const angleInDegrees = (angleInRadians * 180) / Math.PI;
|
||||
|
||||
return angleInDegrees;
|
||||
}
|
||||
|
|
@ -1,72 +0,0 @@
|
|||
import { EdgeLayout } from "../../types";
|
||||
import { getControlPoints, GetControlPointsParams } from "./algorithms";
|
||||
import { getLabelPosition, getPathWithRoundCorners } from "./edge";
|
||||
import { InternalNode, Node } from "@xyflow/react"
|
||||
interface GetBasePathParams extends GetControlPointsParams {
|
||||
borderRadius: number;
|
||||
}
|
||||
|
||||
export function getBasePath({
|
||||
id,
|
||||
offset,
|
||||
borderRadius,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
}: any) {
|
||||
const sourceNode: InternalNode =
|
||||
kReactFlow.instance!.getNode(source)!;
|
||||
const targetNode: InternalNode =
|
||||
kReactFlow.instance!.getNode(target)!;
|
||||
return getPathWithPoints({
|
||||
offset,
|
||||
borderRadius,
|
||||
source: {
|
||||
id: "source-" + id,
|
||||
x: sourceX,
|
||||
y: sourceY,
|
||||
position: sourcePosition,
|
||||
},
|
||||
target: {
|
||||
id: "target-" + id,
|
||||
x: targetX,
|
||||
y: targetY,
|
||||
position: targetPosition,
|
||||
},
|
||||
sourceRect: {
|
||||
...(sourceNode.internals.positionAbsolute || sourceNode.position),
|
||||
width: sourceNode.width!,
|
||||
height: sourceNode.height!,
|
||||
},
|
||||
targetRect: {
|
||||
...(targetNode.internals.positionAbsolute || targetNode.position),
|
||||
width: targetNode.width!,
|
||||
height: targetNode.height!,
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
export function getPathWithPoints({
|
||||
source,
|
||||
target,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
offset = 20,
|
||||
borderRadius = 16,
|
||||
}: GetBasePathParams): EdgeLayout {
|
||||
const { points, inputPoints } = getControlPoints({
|
||||
source,
|
||||
target,
|
||||
offset,
|
||||
sourceRect,
|
||||
targetRect,
|
||||
});
|
||||
const labelPosition = getLabelPosition(points);
|
||||
const path = getPathWithRoundCorners(points, borderRadius);
|
||||
return { path, points, inputPoints, labelPosition };
|
||||
}
|
||||
|
|
@ -1,623 +0,0 @@
|
|||
import { Position } from "@xyflow/react";
|
||||
import { isHorizontalFromPosition } from "./edge";
|
||||
import { uuid } from "../../utils/uuid";
|
||||
|
||||
export interface ControlPoint {
|
||||
id: string;
|
||||
x: number;
|
||||
y: number;
|
||||
}
|
||||
|
||||
export interface NodeRect {
|
||||
x: number; // left
|
||||
y: number; // top
|
||||
width: number;
|
||||
height: number;
|
||||
}
|
||||
|
||||
export interface RectSides {
|
||||
top: number;
|
||||
right: number;
|
||||
bottom: number;
|
||||
left: number;
|
||||
}
|
||||
|
||||
export interface HandlePosition extends ControlPoint {
|
||||
position: Position;
|
||||
}
|
||||
|
||||
export interface GetVerticesParams {
|
||||
source: NodeRect;
|
||||
target: NodeRect;
|
||||
sourceOffset: ControlPoint;
|
||||
targetOffset: ControlPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算两个节点之间的控制点位置
|
||||
*
|
||||
* 该函数用于在图形编辑器中确定边的控制点,以实现更自然的边布局。
|
||||
* 主要应用于:
|
||||
* 1. 节点之间连线的路径规划
|
||||
* 2. 边的弯曲程度控制
|
||||
* 3. 避免边与节点重叠
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 基于源节点和目标节点构建外部边界矩形
|
||||
* 2. 基于偏移点构建内部边界矩形
|
||||
* 3. 在两个矩形的边上生成候选控制点
|
||||
* 4. 过滤掉无效的控制点
|
||||
*
|
||||
* @param {GetVerticesParams} params - 计算所需的参数
|
||||
* @param {Rect} params.source - 源节点的矩形区域,包含x、y、width、height
|
||||
* @param {Rect} params.target - 目标节点的矩形区域
|
||||
* @param {Point} params.sourceOffset - 源节点上的连接点坐标
|
||||
* @param {Point} params.targetOffset - 目标节点上的连接点坐标
|
||||
* @returns {ControlPoint[]} 有效的控制点数组,每个点包含唯一ID和坐标
|
||||
*/
|
||||
export const getCenterPoints = ({
|
||||
source,
|
||||
target,
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
}: GetVerticesParams): ControlPoint[] => {
|
||||
// 特殊情况处理:当源点和目标点在同一直线上时,无法构成有效的控制区域
|
||||
if (sourceOffset.x === targetOffset.x || sourceOffset.y === targetOffset.y) {
|
||||
return [];
|
||||
}
|
||||
|
||||
// 步骤1: 获取外部边界
|
||||
// 收集两个节点的所有顶点,用于构建外部最大矩形
|
||||
const vertices = [...getRectVertices(source), ...getRectVertices(target)];
|
||||
const outerSides = getSidesFromPoints(vertices);
|
||||
|
||||
// 步骤2: 获取内部边界
|
||||
// 根据偏移点(实际连接点)计算内部矩形的四条边
|
||||
const { left, right, top, bottom } = getSidesFromPoints([
|
||||
sourceOffset,
|
||||
targetOffset,
|
||||
]);
|
||||
|
||||
// 步骤3: 计算中心参考线
|
||||
const centerX = (left + right) / 2; // 水平中心线
|
||||
const centerY = (top + bottom) / 2; // 垂直中心线
|
||||
|
||||
// 步骤4: 生成候选控制点
|
||||
// 在内外两个矩形的边上各生成4个控制点,共8个候选点
|
||||
const points = [
|
||||
{ id: uuid(), x: centerX, y: top }, // 内矩形-上
|
||||
{ id: uuid(), x: right, y: centerY }, // 内矩形-右
|
||||
{ id: uuid(), x: centerX, y: bottom }, // 内矩形-下
|
||||
{ id: uuid(), x: left, y: centerY }, // 内矩形-左
|
||||
{ id: uuid(), x: centerX, y: outerSides.top }, // 外矩形-上
|
||||
{ id: uuid(), x: outerSides.right, y: centerY }, // 外矩形-右
|
||||
{ id: uuid(), x: centerX, y: outerSides.bottom },// 外矩形-下
|
||||
{ id: uuid(), x: outerSides.left, y: centerY }, // 外矩形-左
|
||||
];
|
||||
|
||||
// 步骤5: 过滤无效控制点
|
||||
// 移除落在源节点或目标节点内部的控制点,避免边穿过节点
|
||||
return points.filter((p) => {
|
||||
return !isPointInRect(p, source) && !isPointInRect(p, target);
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* 扩展矩形区域
|
||||
* @param rect 原始矩形区域
|
||||
* @param offset 扩展偏移量
|
||||
* @returns 扩展后的新矩形区域
|
||||
*
|
||||
* 该函数将一个矩形区域向四周扩展指定的偏移量。
|
||||
* 扩展规则:
|
||||
* 1. x和y坐标各向外偏移offset距离
|
||||
* 2. 宽度和高度各增加2*offset
|
||||
*/
|
||||
export const getExpandedRect = (rect: NodeRect, offset: number): NodeRect => {
|
||||
return {
|
||||
x: rect.x - offset,
|
||||
y: rect.y - offset,
|
||||
width: rect.width + 2 * offset,
|
||||
height: rect.height + 2 * offset,
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* 检测两个矩形是否重叠
|
||||
* @param rect1 第一个矩形
|
||||
* @param rect2 第二个矩形
|
||||
* @returns 布尔值,true表示重叠,false表示不重叠
|
||||
*
|
||||
* 使用AABB(轴对齐包围盒)碰撞检测算法:
|
||||
* 1. 计算x轴投影是否重叠
|
||||
* 2. 计算y轴投影是否重叠
|
||||
* 两个轴向都重叠则矩形重叠
|
||||
*/
|
||||
export const isRectOverLapping = (rect1: NodeRect, rect2: NodeRect) => {
|
||||
return (
|
||||
Math.abs(rect1.x - rect2.x) < (rect1.width + rect2.width) / 2 &&
|
||||
Math.abs(rect1.y - rect2.y) < (rect1.height + rect2.height) / 2
|
||||
);
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断点是否在矩形内
|
||||
* @param p 待检测的控制点
|
||||
* @param box 矩形区域
|
||||
* @returns 布尔值,true表示点在矩形内,false表示点在矩形外
|
||||
*
|
||||
* 点在矩形内的条件:
|
||||
* 1. x坐标在矩形左右边界之间
|
||||
* 2. y坐标在矩形上下边界之间
|
||||
*/
|
||||
export const isPointInRect = (p: ControlPoint, box: NodeRect) => {
|
||||
const sides = getRectSides(box);
|
||||
return (
|
||||
p.x >= sides.left &&
|
||||
p.x <= sides.right &&
|
||||
p.y >= sides.top &&
|
||||
p.y <= sides.bottom
|
||||
);
|
||||
};
|
||||
|
||||
/**
|
||||
* 矩形顶点计算模块
|
||||
* 用于处理图形编辑器中矩形节点的顶点、边界等几何计算
|
||||
* 主要应用于连线路径规划和节点定位
|
||||
*/
|
||||
|
||||
/**
|
||||
* 根据矩形和外部顶点计算包围矩形的顶点坐标
|
||||
* @param box 原始矩形的位置和尺寸信息
|
||||
* @param vertex 外部控制点
|
||||
* @returns 包围矩形的四个顶点坐标
|
||||
* 算法思路:
|
||||
* 1. 合并外部顶点和原矩形的顶点
|
||||
* 2. 计算所有点的边界范围
|
||||
* 3. 根据边界生成新的矩形顶点
|
||||
*/
|
||||
export const getVerticesFromRectVertex = (
|
||||
box: NodeRect,
|
||||
vertex: ControlPoint
|
||||
): ControlPoint[] => {
|
||||
const points = [vertex, ...getRectVertices(box)];
|
||||
const { top, right, bottom, left } = getSidesFromPoints(points);
|
||||
return [
|
||||
{ id: uuid(), x: left, y: top }, // 左上角顶点
|
||||
{ id: uuid(), x: right, y: top }, // 右上角顶点
|
||||
{ id: uuid(), x: right, y: bottom }, // 右下角顶点
|
||||
{ id: uuid(), x: left, y: bottom }, // 左下角顶点
|
||||
];
|
||||
};
|
||||
|
||||
/**
|
||||
* 计算一组点的边界范围
|
||||
* @param points 控制点数组
|
||||
* @returns 返回边界的上下左右极值
|
||||
* 实现方式:
|
||||
* - 使用数组map和Math.min/max计算坐标的最值
|
||||
*/
|
||||
export const getSidesFromPoints = (points: ControlPoint[]) => {
|
||||
const left = Math.min(...points.map((p) => p.x)); // 最左侧x坐标
|
||||
const right = Math.max(...points.map((p) => p.x)); // 最右侧x坐标
|
||||
const top = Math.min(...points.map((p) => p.y)); // 最上方y坐标
|
||||
const bottom = Math.max(...points.map((p) => p.y)); // 最下方y坐标
|
||||
return { top, right, bottom, left };
|
||||
};
|
||||
|
||||
/**
|
||||
* 获取矩形的四条边界位置
|
||||
* @param box 矩形的位置和尺寸信息
|
||||
* @returns 矩形的上下左右边界坐标
|
||||
* 计算方式:
|
||||
* - 左边界 = x坐标
|
||||
* - 右边界 = x + width
|
||||
* - 上边界 = y坐标
|
||||
* - 下边界 = y + height
|
||||
*/
|
||||
export const getRectSides = (box: NodeRect): RectSides => {
|
||||
const { x: left, y: top, width, height } = box;
|
||||
const right = left + width;
|
||||
const bottom = top + height;
|
||||
return { top, right, bottom, left };
|
||||
};
|
||||
|
||||
/**
|
||||
* 根据边界信息生成矩形的四个顶点
|
||||
* @param sides 矩形的上下左右边界坐标
|
||||
* @returns 返回四个顶点的坐标信息
|
||||
* 顶点顺序: 左上 -> 右上 -> 右下 -> 左下
|
||||
*/
|
||||
export const getRectVerticesFromSides = ({
|
||||
top,
|
||||
right,
|
||||
bottom,
|
||||
left,
|
||||
}: RectSides): ControlPoint[] => {
|
||||
return [
|
||||
{ id: uuid(), x: left, y: top }, // 左上角顶点
|
||||
{ id: uuid(), x: right, y: top }, // 右上角顶点
|
||||
{ id: uuid(), x: right, y: bottom }, // 右下角顶点
|
||||
{ id: uuid(), x: left, y: bottom }, // 左下角顶点
|
||||
];
|
||||
};
|
||||
|
||||
/**
|
||||
* 获取矩形的四个顶点坐标
|
||||
* @param box 矩形的位置和尺寸信息
|
||||
* @returns 返回矩形四个顶点的坐标
|
||||
* 实现流程:
|
||||
* 1. 先计算矩形的边界
|
||||
* 2. 根据边界生成顶点
|
||||
*/
|
||||
export const getRectVertices = (box: NodeRect) => {
|
||||
const sides = getRectSides(box);
|
||||
return getRectVerticesFromSides(sides);
|
||||
};
|
||||
/**
|
||||
* 合并多个矩形区域,返回一个能包含所有输入矩形的最小矩形
|
||||
* @param boxes 需要合并的矩形数组,每个矩形包含 x,y 坐标和宽高信息
|
||||
* @returns 合并后的最小包围矩形
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 找出所有矩形中最左边的 x 坐标(left)和最右边的 x 坐标(right)
|
||||
* 2. 找出所有矩形中最上边的 y 坐标(top)和最下边的 y 坐标(bottom)
|
||||
* 3. 用这四个边界值构造出新的矩形
|
||||
*/
|
||||
export const mergeRects = (...boxes: NodeRect[]): NodeRect => {
|
||||
// 计算所有矩形的最左边界
|
||||
const left = Math.min(
|
||||
...boxes.reduce((pre, e) => [...pre, e.x, e.x + e.width], [] as number[])
|
||||
);
|
||||
// 计算所有矩形的最右边界
|
||||
const right = Math.max(
|
||||
...boxes.reduce((pre, e) => [...pre, e.x, e.x + e.width], [] as number[])
|
||||
);
|
||||
// 计算所有矩形的最上边界
|
||||
const top = Math.min(
|
||||
...boxes.reduce((pre, e) => [...pre, e.y, e.y + e.height], [] as number[])
|
||||
);
|
||||
// 计算所有矩形的最下边界
|
||||
const bottom = Math.max(
|
||||
...boxes.reduce((pre, e) => [...pre, e.y, e.y + e.height], [] as number[])
|
||||
);
|
||||
|
||||
// 返回能包含所有输入矩形的最小矩形
|
||||
return {
|
||||
x: left, // 左上角 x 坐标
|
||||
y: top, // 左上角 y 坐标
|
||||
width: right - left, // 宽度 = 最右边界 - 最左边界
|
||||
height: bottom - top, // 高度 = 最下边界 - 最上边界
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* 根据给定的位置和偏移量计算控制点坐标
|
||||
* @param box - 起始位置信息,包含x、y坐标和位置类型(上下左右)
|
||||
* @param offset - 偏移距离
|
||||
* @returns 返回计算后的控制点对象,包含唯一id和新的x、y坐标
|
||||
*/
|
||||
export const getOffsetPoint = (
|
||||
box: HandlePosition,
|
||||
offset: number
|
||||
): ControlPoint => {
|
||||
// 根据不同的位置类型计算偏移后的坐标
|
||||
switch (box.position) {
|
||||
case Position.Top: // 顶部位置,y坐标向上偏移
|
||||
return {
|
||||
id: uuid(),
|
||||
x: box.x,
|
||||
y: box.y - offset,
|
||||
};
|
||||
case Position.Bottom: // 底部位置,y坐标向下偏移
|
||||
return { id: uuid(), x: box.x, y: box.y + offset };
|
||||
case Position.Left: // 左侧位置,x坐标向左偏移
|
||||
return { id: uuid(), x: box.x - offset, y: box.y };
|
||||
case Position.Right: // 右侧位置,x坐标向右偏移
|
||||
return { id: uuid(), x: box.x + offset, y: box.y };
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断一个点是否在线段上
|
||||
* @param p - 待判断的点
|
||||
* @param p1 - 线段起点
|
||||
* @param p2 - 线段终点
|
||||
* @returns 如果点在线段上返回true,否则返回false
|
||||
*
|
||||
* 判断逻辑:
|
||||
* 1. 点必须在线段所在的直线上(x坐标相等或y坐标相等)
|
||||
* 2. 点的坐标必须在线段两端点坐标范围内
|
||||
*/
|
||||
export const isInLine = (
|
||||
p: ControlPoint,
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint
|
||||
) => {
|
||||
// 获取x坐标的范围区间[min, max]
|
||||
const xPoints = p1.x < p2.x ? [p1.x, p2.x] : [p2.x, p1.x];
|
||||
// 获取y坐标的范围区间[min, max]
|
||||
const yPoints = p1.y < p2.y ? [p1.y, p2.y] : [p2.y, p1.y];
|
||||
|
||||
return (
|
||||
// 垂直线段:三点x坐标相等,且待判断点的y坐标在范围内
|
||||
(p1.x === p.x && p.x === p2.x && p.y >= yPoints[0] && p.y <= yPoints[1]) ||
|
||||
// 水平线段:三点y坐标相等,且待判断点的x坐标在范围内
|
||||
(p1.y === p.y && p.y === p2.y && p.x >= xPoints[0] && p.x <= xPoints[1])
|
||||
);
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断一个点是否在直线上(不考虑线段端点限制)
|
||||
* @param p - 待判断的点
|
||||
* @param p1 - 直线上的点1
|
||||
* @param p2 - 直线上的点2
|
||||
* @returns 如果点在直线上返回true,否则返回false
|
||||
*
|
||||
* 判断逻辑:
|
||||
* 仅判断点是否与直线上的两点共线(x坐标相等或y坐标相等)
|
||||
*/
|
||||
export const isOnLine = (
|
||||
p: ControlPoint,
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint
|
||||
) => {
|
||||
return (p1.x === p.x && p.x === p2.x) || (p1.y === p.y && p.y === p2.y);
|
||||
};
|
||||
export interface OptimizePointsParams {
|
||||
edgePoints: ControlPoint[];
|
||||
source: HandlePosition;
|
||||
target: HandlePosition;
|
||||
sourceOffset: ControlPoint;
|
||||
targetOffset: ControlPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* 优化边的控制点
|
||||
*
|
||||
* 主要功能:
|
||||
* 1. 合并坐标相近的点
|
||||
* 2. 删除重复的坐标点
|
||||
* 3. 修正起点和终点的位置
|
||||
*
|
||||
* @param p 包含边的起点、终点、偏移点和中间控制点等信息的参数对象
|
||||
* @returns 优化后的控制点信息,包含起点、终点、起点偏移、终点偏移和中间控制点
|
||||
*/
|
||||
export const optimizeInputPoints = (p: OptimizePointsParams) => {
|
||||
// 合并坐标相近的点,将所有点放入一个数组进行处理
|
||||
let edgePoints = mergeClosePoints([
|
||||
p.source,
|
||||
p.sourceOffset,
|
||||
...p.edgePoints,
|
||||
p.targetOffset,
|
||||
p.target,
|
||||
]);
|
||||
|
||||
// 从合并后的点中提取起点和终点
|
||||
const source = edgePoints.shift()!;
|
||||
const target = edgePoints.pop()!;
|
||||
const sourceOffset = edgePoints[0];
|
||||
const targetOffset = edgePoints[edgePoints.length - 1];
|
||||
|
||||
// 根据起点和终点的位置类型修正其坐标
|
||||
// 如果是水平方向,则保持x坐标不变;否则保持y坐标不变
|
||||
if (isHorizontalFromPosition(p.source.position)) {
|
||||
source.x = p.source.x;
|
||||
} else {
|
||||
source.y = p.source.y;
|
||||
}
|
||||
if (isHorizontalFromPosition(p.target.position)) {
|
||||
target.x = p.target.x;
|
||||
} else {
|
||||
target.y = p.target.y;
|
||||
}
|
||||
|
||||
// 移除重复的坐标点,并为每个点分配唯一ID
|
||||
edgePoints = removeRepeatPoints(edgePoints).map((p, idx) => ({
|
||||
...p,
|
||||
id: `${idx + 1}`,
|
||||
}));
|
||||
|
||||
return { source, target, sourceOffset, targetOffset, edgePoints };
|
||||
};
|
||||
|
||||
/**
|
||||
* 简化边的控制点
|
||||
*
|
||||
* 主要功能:
|
||||
* 1. 确保直线上只保留两个端点
|
||||
* 2. 移除位于直线内部的控制点
|
||||
*
|
||||
* 实现原理:
|
||||
* - 遍历所有中间点
|
||||
* - 判断每个点是否在其相邻两点形成的直线上
|
||||
* - 如果在直线上则移除该点
|
||||
*
|
||||
* @param points 原始控制点数组
|
||||
* @returns 简化后的控制点数组
|
||||
*/
|
||||
export function reducePoints(points: ControlPoint[]): ControlPoint[] {
|
||||
const optimizedPoints = [points[0]];
|
||||
|
||||
// 遍历除首尾点外的所有点
|
||||
for (let i = 1; i < points.length - 1; i++) {
|
||||
// 判断当前点是否在前后两点形成的直线上
|
||||
const inSegment = isInLine(points[i], points[i - 1], points[i + 1]);
|
||||
// 如果不在直线上,则保留该点
|
||||
if (!inSegment) {
|
||||
optimizedPoints.push(points[i]);
|
||||
}
|
||||
}
|
||||
|
||||
optimizedPoints.push(points[points.length - 1]);
|
||||
return optimizedPoints;
|
||||
}
|
||||
/**
|
||||
* 坐标点处理工具函数集合
|
||||
* 主要用于图形边缘控制点的坐标处理,包括合并、去重等操作
|
||||
*/
|
||||
|
||||
/**
|
||||
* 合并临近坐标点,同时将坐标值取整
|
||||
* @param points 控制点数组
|
||||
* @param threshold 合并阈值,默认为4个像素
|
||||
* @returns 处理后的控制点数组
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 分别记录x和y轴上的所有坐标值
|
||||
* 2. 对每个新坐标,在阈值范围内查找已存在的相近值
|
||||
* 3. 如果找到相近值则使用已存在值,否则添加新值
|
||||
*/
|
||||
export function mergeClosePoints(
|
||||
points: ControlPoint[],
|
||||
threshold = 4
|
||||
): ControlPoint[] {
|
||||
// 存储已处理的离散坐标值
|
||||
const positions = { x: [] as number[], y: [] as number[] };
|
||||
|
||||
/**
|
||||
* 查找或添加坐标值
|
||||
* @param axis 坐标轴('x'|'y')
|
||||
* @param v 待处理的坐标值
|
||||
* @returns 最终使用的坐标值
|
||||
*/
|
||||
const findPosition = (axis: "x" | "y", v: number) => {
|
||||
// 向下取整,确保坐标为整数
|
||||
v = Math.floor(v);
|
||||
const ps = positions[axis];
|
||||
// 在阈值范围内查找已存在的相近值
|
||||
let p = ps.find((e) => Math.abs(v - e) < threshold);
|
||||
// 如果没找到相近值,则添加新值
|
||||
if (p == null) {
|
||||
p = v;
|
||||
positions[axis].push(v);
|
||||
}
|
||||
return p;
|
||||
};
|
||||
|
||||
// 处理每个控制点的坐标
|
||||
const finalPoints = points.map((point) => {
|
||||
return {
|
||||
...point,
|
||||
x: findPosition("x", point.x),
|
||||
y: findPosition("y", point.y),
|
||||
};
|
||||
});
|
||||
|
||||
return finalPoints;
|
||||
}
|
||||
|
||||
/**
|
||||
* 判断两个控制点是否重合
|
||||
* @param p1 控制点1
|
||||
* @param p2 控制点2
|
||||
* @returns 是否重合
|
||||
*/
|
||||
export function isEqualPoint(p1: ControlPoint, p2: ControlPoint) {
|
||||
return p1.x === p2.x && p1.y === p2.y;
|
||||
}
|
||||
|
||||
/**
|
||||
* 移除重复的控制点,但保留起点和终点
|
||||
* @param points 控制点数组
|
||||
* @returns 去重后的控制点数组
|
||||
*
|
||||
* 实现思路:
|
||||
* 1. 使用Set存储已处理的坐标字符串(格式:"x-y")
|
||||
* 2. 保留最后一个点(终点)
|
||||
* 3. 遍历时跳过重复坐标,但保留第一次出现的点
|
||||
*/
|
||||
export function removeRepeatPoints(points: ControlPoint[]): ControlPoint[] {
|
||||
// 先添加终点坐标,确保终点被保留
|
||||
const lastP = points[points.length - 1];
|
||||
const uniquePoints = new Set([`${lastP.x}-${lastP.y}`]);
|
||||
const finalPoints: ControlPoint[] = [];
|
||||
|
||||
points.forEach((p, idx) => {
|
||||
// 处理终点
|
||||
if (idx === points.length - 1) {
|
||||
return finalPoints.push(p);
|
||||
}
|
||||
// 使用坐标字符串作为唯一标识
|
||||
const key = `${p.x}-${p.y}`;
|
||||
if (!uniquePoints.has(key)) {
|
||||
uniquePoints.add(key);
|
||||
finalPoints.push(p);
|
||||
}
|
||||
});
|
||||
return finalPoints;
|
||||
}
|
||||
/**
|
||||
* 判断两条线段是否相交
|
||||
* @param p0 第一条线段的起点
|
||||
* @param p1 第一条线段的终点
|
||||
* @param p2 第二条线段的起点
|
||||
* @param p3 第二条线段的终点
|
||||
* @returns 如果两线段相交返回true,否则返回false
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 使用向量叉积判断两线段是否平行
|
||||
* 2. 使用参数方程求解交点参数s和t
|
||||
* 3. 判断参数是否在[0,1]区间内来确定是否相交
|
||||
*/
|
||||
const isSegmentsIntersected = (
|
||||
p0: ControlPoint,
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
p3: ControlPoint
|
||||
): boolean => {
|
||||
// 计算两条线段的方向向量
|
||||
const s1x = p1.x - p0.x;
|
||||
const s1y = p1.y - p0.y;
|
||||
const s2x = p3.x - p2.x;
|
||||
const s2y = p3.y - p2.y;
|
||||
|
||||
// 使用向量叉积判断两线段是否平行
|
||||
if (s1x * s2y - s1y * s2x === 0) {
|
||||
// 平行线段必不相交
|
||||
return false;
|
||||
}
|
||||
|
||||
// 求解参数方程,获取交点参数s和t
|
||||
const denominator = -s2x * s1y + s1x * s2y;
|
||||
const s = (s1y * (p2.x - p0.x) - s1x * (p2.y - p0.y)) / denominator;
|
||||
const t = (s2x * (p0.y - p2.y) - s2y * (p0.x - p2.x)) / denominator;
|
||||
|
||||
// 当且仅当s和t都在[0,1]区间内时,两线段相交
|
||||
return s >= 0 && s <= 1 && t >= 0 && t <= 1;
|
||||
};
|
||||
|
||||
/**
|
||||
* 判断线段是否与矩形相交
|
||||
* @param p1 线段起点
|
||||
* @param p2 线段终点
|
||||
* @param box 矩形区域
|
||||
* @returns 如果线段与矩形有交点返回true,否则返回false
|
||||
*
|
||||
* 实现思路:
|
||||
* 1. 首先处理特殊情况:矩形退化为点时必不相交
|
||||
* 2. 将矩形分解为四条边
|
||||
* 3. 判断线段是否与任意一条矩形边相交
|
||||
* 4. 只要与任意一边相交,则与矩形相交
|
||||
*/
|
||||
export const isSegmentCrossingRect = (
|
||||
p1: ControlPoint,
|
||||
p2: ControlPoint,
|
||||
box: NodeRect
|
||||
): boolean => {
|
||||
// 处理特殊情况:矩形退化为点
|
||||
if (box.width === 0 && box.height === 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 获取矩形的四个顶点
|
||||
const [topLeft, topRight, bottomRight, bottomLeft] = getRectVertices(box);
|
||||
|
||||
// 判断线段是否与矩形的任意一条边相交
|
||||
return (
|
||||
isSegmentsIntersected(p1, p2, topLeft, topRight) || // 上边
|
||||
isSegmentsIntersected(p1, p2, topRight, bottomRight) || // 右边
|
||||
isSegmentsIntersected(p1, p2, bottomRight, bottomLeft) || // 下边
|
||||
isSegmentsIntersected(p1, p2, bottomLeft, topLeft) // 左边
|
||||
);
|
||||
};
|
||||
|
|
@ -1,200 +0,0 @@
|
|||
import { deepClone, lastOf } from "@/utils/base";
|
||||
import { Position, getBezierPath } from "reactflow";
|
||||
|
||||
import { getBasePath } from ".";
|
||||
import {
|
||||
kBaseMarkerColor,
|
||||
kBaseMarkerColors,
|
||||
kNoMarkerColor,
|
||||
kYesMarkerColor,
|
||||
} from "../../components/Edges/Marker";
|
||||
import { isEqual } from "../../utils/diff";
|
||||
import { EdgeLayout, ReactFlowEdgeWithData } from "../../data/types";
|
||||
import { kReactFlow } from "../../states/reactflow";
|
||||
import { getPathWithRoundCorners } from "./edge";
|
||||
|
||||
interface EdgeStyle {
|
||||
color: string;
|
||||
edgeType: "solid" | "dashed";
|
||||
pathType: "base" | "bezier";
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the style of the connection line
|
||||
*
|
||||
* 1. When there are more than 3 edges connecting to both ends of the Node, use multiple colors to distinguish the edges.
|
||||
* 2. When the connection line goes backward or connects to a hub Node, use dashed lines to distinguish the edges.
|
||||
* 3. When the connection line goes from a hub to a Node, use bezier path.
|
||||
*/
|
||||
export const getEdgeStyles = (props: {
|
||||
id: string;
|
||||
isBackward: boolean;
|
||||
}): EdgeStyle => {
|
||||
const { id, isBackward } = props;
|
||||
const idx = parseInt(lastOf(id.split("#")) ?? "0", 10);
|
||||
if (isBackward) {
|
||||
// Use dashed lines to distinguish the edges when the connection line goes backward or connects to a hub Node
|
||||
return { color: kNoMarkerColor, edgeType: "dashed", pathType: "base" };
|
||||
}
|
||||
const edge: ReactFlowEdgeWithData = kReactFlow.instance!.getEdge(id)!;
|
||||
if (edge.data!.targetPort.edges > 2) {
|
||||
// Use dashed bezier path when the connection line connects to a hub Node
|
||||
return {
|
||||
color: kYesMarkerColor,
|
||||
edgeType: "dashed",
|
||||
pathType: "bezier",
|
||||
};
|
||||
}
|
||||
if (edge.data!.sourcePort.edges > 2) {
|
||||
// Use multiple colors to distinguish the edges when there are more than 3 edges connecting to both ends of the Node
|
||||
return {
|
||||
color: kBaseMarkerColors[idx % kBaseMarkerColors.length],
|
||||
edgeType: "solid",
|
||||
pathType: "base",
|
||||
};
|
||||
}
|
||||
return { color: kBaseMarkerColor, edgeType: "solid", pathType: "base" };
|
||||
};
|
||||
|
||||
interface ILayoutEdge {
|
||||
id: string;
|
||||
layout?: EdgeLayout;
|
||||
offset: number;
|
||||
borderRadius: number;
|
||||
pathType: EdgeStyle["pathType"];
|
||||
source: string;
|
||||
target: string;
|
||||
sourceX: number;
|
||||
sourceY: number;
|
||||
targetX: number;
|
||||
targetY: number;
|
||||
sourcePosition: Position;
|
||||
targetPosition: Position;
|
||||
}
|
||||
|
||||
export function layoutEdge({
|
||||
id,
|
||||
layout,
|
||||
offset,
|
||||
borderRadius,
|
||||
pathType,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
}: ILayoutEdge): EdgeLayout {
|
||||
const relayoutDeps = [sourceX, sourceY, targetX, targetY];
|
||||
const needRelayout = !isEqual(relayoutDeps, layout?.deps?.relayoutDeps);
|
||||
const reBuildPathDeps = layout?.points;
|
||||
const needReBuildPath = !isEqual(
|
||||
reBuildPathDeps,
|
||||
layout?.deps?.reBuildPathDeps
|
||||
);
|
||||
let newLayout = layout;
|
||||
if (needRelayout) {
|
||||
newLayout = _layoutEdge({
|
||||
id,
|
||||
offset,
|
||||
borderRadius,
|
||||
pathType,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
});
|
||||
} else if (needReBuildPath) {
|
||||
newLayout = _layoutEdge({
|
||||
layout,
|
||||
id,
|
||||
offset,
|
||||
borderRadius,
|
||||
pathType,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
});
|
||||
}
|
||||
newLayout!.deps = deepClone({ relayoutDeps, reBuildPathDeps });
|
||||
return newLayout!;
|
||||
}
|
||||
|
||||
function _layoutEdge({
|
||||
id,
|
||||
layout,
|
||||
offset,
|
||||
borderRadius,
|
||||
pathType,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
}: ILayoutEdge): EdgeLayout {
|
||||
const _pathType: EdgeStyle["pathType"] = pathType;
|
||||
if (_pathType === "bezier") {
|
||||
const [path, labelX, labelY] = getBezierPath({
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
});
|
||||
const points = [
|
||||
{
|
||||
id: "source-" + id,
|
||||
x: sourceX,
|
||||
y: sourceY,
|
||||
},
|
||||
{
|
||||
id: "target-" + id,
|
||||
x: targetX,
|
||||
y: targetY,
|
||||
},
|
||||
];
|
||||
return {
|
||||
path,
|
||||
points,
|
||||
inputPoints: points,
|
||||
labelPosition: {
|
||||
x: labelX,
|
||||
y: labelY,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
if ((layout?.points?.length ?? 0) > 1) {
|
||||
layout!.path = getPathWithRoundCorners(layout!.points, borderRadius);
|
||||
return layout!;
|
||||
}
|
||||
|
||||
return getBasePath({
|
||||
id,
|
||||
offset,
|
||||
borderRadius,
|
||||
source,
|
||||
target,
|
||||
sourceX,
|
||||
sourceY,
|
||||
targetX,
|
||||
targetY,
|
||||
sourcePosition,
|
||||
targetPosition,
|
||||
});
|
||||
}
|
||||
|
|
@ -1,124 +0,0 @@
|
|||
import { Node, Edge } from "@xyflow/react";
|
||||
|
||||
interface LayoutOptions {
|
||||
nodes: Node[];
|
||||
edges: Edge[];
|
||||
levelSeparation?: number;
|
||||
nodeSeparation?: number;
|
||||
}
|
||||
|
||||
interface NodeWithLayout extends Node {
|
||||
width?: number;
|
||||
height?: number;
|
||||
children?: NodeWithLayout[];
|
||||
parent?: NodeWithLayout;
|
||||
subtreeHeight?: number;
|
||||
isRight?: boolean;
|
||||
}
|
||||
|
||||
export function getMindMapLayout(options: LayoutOptions) {
|
||||
const {
|
||||
nodes,
|
||||
edges,
|
||||
levelSeparation = 200,
|
||||
nodeSeparation = 60
|
||||
} = options;
|
||||
|
||||
// 构建树形结构
|
||||
const nodeMap = new Map<string, NodeWithLayout>();
|
||||
nodes.forEach(node => {
|
||||
nodeMap.set(node.id, { ...node, children: [], width: 150, height: 40 });
|
||||
});
|
||||
|
||||
let rootNode: NodeWithLayout | undefined;
|
||||
edges.forEach(edge => {
|
||||
const source = nodeMap.get(edge.source);
|
||||
const target = nodeMap.get(edge.target);
|
||||
if (source && target) {
|
||||
source.children?.push(target);
|
||||
target.parent = source;
|
||||
}
|
||||
});
|
||||
|
||||
// 找到根节点
|
||||
rootNode = Array.from(nodeMap.values()).find(node => !node.parent);
|
||||
if (!rootNode) return { nodes, edges };
|
||||
|
||||
// 分配节点到左右两侧
|
||||
function assignSides(node: NodeWithLayout, isRight: boolean = true) {
|
||||
if (!node.children?.length) return;
|
||||
|
||||
const len = node.children.length;
|
||||
const midIndex = Math.floor(len / 2);
|
||||
|
||||
// 如果是根节点,将子节点分为左右两部分
|
||||
if (!node.parent) {
|
||||
for (let i = 0; i < len; i++) {
|
||||
const child = node.children[i];
|
||||
assignSides(child, i < midIndex);
|
||||
child.isRight = i < midIndex;
|
||||
}
|
||||
}
|
||||
// 如果不是根节点,所有子节点继承父节点的方向
|
||||
else {
|
||||
node.children.forEach(child => {
|
||||
assignSides(child, isRight);
|
||||
child.isRight = isRight;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// 计算子树高度
|
||||
function calculateSubtreeHeight(node: NodeWithLayout): number {
|
||||
if (!node.children?.length) {
|
||||
node.subtreeHeight = node.height || 40;
|
||||
return node.subtreeHeight;
|
||||
}
|
||||
|
||||
const childrenHeight = node.children.reduce((sum, child) => {
|
||||
return sum + calculateSubtreeHeight(child);
|
||||
}, 0);
|
||||
|
||||
const totalGaps = (node.children.length - 1) * nodeSeparation;
|
||||
node.subtreeHeight = Math.max(node.height || 40, childrenHeight + totalGaps);
|
||||
return node.subtreeHeight;
|
||||
}
|
||||
|
||||
// 布局计算
|
||||
function calculateLayout(node: NodeWithLayout, x: number, y: number) {
|
||||
node.position = { x, y };
|
||||
if (!node.children?.length) return;
|
||||
|
||||
let currentY = y - (node.subtreeHeight || 0) / 2;
|
||||
|
||||
node.children.forEach(child => {
|
||||
const direction = child.isRight ? 1 : -1;
|
||||
const childX = x + (levelSeparation * direction);
|
||||
const childY = currentY + (child.subtreeHeight || 0) / 2;
|
||||
|
||||
calculateLayout(child, childX, childY);
|
||||
currentY += (child.subtreeHeight || 0) + nodeSeparation;
|
||||
});
|
||||
}
|
||||
|
||||
// 执行布局流程
|
||||
if (rootNode) {
|
||||
// 1. 分配节点到左右两侧
|
||||
assignSides(rootNode);
|
||||
// 2. 计算子树高度
|
||||
calculateSubtreeHeight(rootNode);
|
||||
// 3. 执行布局计算
|
||||
calculateLayout(rootNode, 0, 0);
|
||||
}
|
||||
|
||||
// 转换回原始格式
|
||||
const layoutedNodes = Array.from(nodeMap.values()).map(node => ({
|
||||
...node,
|
||||
position: node.position,
|
||||
}));
|
||||
|
||||
return {
|
||||
nodes: layoutedNodes,
|
||||
edges,
|
||||
};
|
||||
}
|
||||
|
|
@ -1,148 +0,0 @@
|
|||
import { MarkerType, Position, useInternalNode, Node, Edge } from "@xyflow/react";
|
||||
import { LayoutDirection, LayoutVisibility } from "./node";
|
||||
|
||||
/**
|
||||
* 获取流程图中的根节点
|
||||
* @param nodes - 所有节点数组
|
||||
* @param edges - 所有边的数组
|
||||
* @returns 根节点数组(没有入边的节点)
|
||||
*/
|
||||
export const getRootNodes = (nodes: Node[], edges: Edge[]): Node[] => {
|
||||
// 创建一个Set来存储所有有入边的节点ID
|
||||
const nodesWithIncoming = new Set(
|
||||
edges.map((edge) => edge.target)
|
||||
);
|
||||
|
||||
// 过滤出没有入边的节点
|
||||
const rootNodes = nodes.filter(
|
||||
(node) => !nodesWithIncoming.has(node.id)
|
||||
);
|
||||
|
||||
return rootNodes;
|
||||
};
|
||||
/**
|
||||
* 获取节点尺寸信息的工具函数
|
||||
* @param node 需要获取尺寸的节点对象
|
||||
* @param defaultSize 默认尺寸配置,包含默认宽度(150px)和高度(36px)
|
||||
* @returns 返回节点的尺寸信息对象,包含:
|
||||
* - hasDimension: 是否已设置实际尺寸
|
||||
* - width: 节点实际宽度
|
||||
* - height: 节点实际高度
|
||||
* - widthWithDefault: 实际宽度或默认宽度
|
||||
* - heightWithDefault: 实际高度或默认高度
|
||||
*/
|
||||
export const getNodeSize = (
|
||||
node: Node,
|
||||
defaultSize = { width: 150, height: 36 }
|
||||
) => {
|
||||
// 获取节点的实际宽高
|
||||
const nodeWith = node?.width;
|
||||
const nodeHeight = node?.height;
|
||||
// 检查节点是否同时设置了宽度和高度
|
||||
const hasDimension = [nodeWith, nodeHeight].every((e) => e != null);
|
||||
|
||||
// 返回包含完整尺寸信息的对象
|
||||
// 使用空值合并运算符(??)在实际尺寸未设置时使用默认值
|
||||
return {
|
||||
hasDimension,
|
||||
width: nodeWith,
|
||||
height: nodeHeight,
|
||||
widthWithDefault: nodeWith ?? defaultSize.width,
|
||||
heightWithDefault: nodeHeight ?? defaultSize.height,
|
||||
};
|
||||
};
|
||||
|
||||
export type IFixPosition = (pros: {
|
||||
x: number;
|
||||
y: number;
|
||||
width: number;
|
||||
height: number;
|
||||
}) => {
|
||||
x: number;
|
||||
y: number;
|
||||
};
|
||||
/**
|
||||
* 节点布局计算函数
|
||||
* @description 根据给定的节点信息和布局参数,计算节点的最终布局属性
|
||||
* @param props 布局参数对象
|
||||
* @param props.node 需要布局的节点对象
|
||||
* @param props.position 节点的初始位置坐标
|
||||
* @param props.direction 布局方向,'horizontal'表示水平布局,'vertical'表示垂直布局
|
||||
* @param props.visibility 节点可见性,'visible'表示可见,其他值表示隐藏
|
||||
* @param props.fixPosition 可选的位置修正函数,用于调整最终位置
|
||||
* @returns 返回计算好布局属性的节点对象
|
||||
*/
|
||||
export const getNodeLayouted = (props: {
|
||||
node: Node;
|
||||
position: { x: number; y: number };
|
||||
direction: LayoutDirection;
|
||||
visibility: LayoutVisibility;
|
||||
fixPosition?: IFixPosition;
|
||||
}) => {
|
||||
// 解构布局参数,设置位置修正函数的默认值
|
||||
const {
|
||||
node,
|
||||
position,
|
||||
direction,
|
||||
visibility,
|
||||
fixPosition = (p) => ({ x: p.x, y: p.y }),
|
||||
} = props;
|
||||
|
||||
// 计算节点的显示状态和布局方向
|
||||
const hidden = visibility !== "visible";
|
||||
const isHorizontal = direction === "horizontal";
|
||||
|
||||
// 获取节点尺寸信息
|
||||
const { width, height, widthWithDefault, heightWithDefault } =
|
||||
getNodeSize(node);
|
||||
|
||||
// 根据布局方向设置节点的连接点位置
|
||||
node.targetPosition = isHorizontal ? Position.Left : Position.Top;
|
||||
node.sourcePosition = isHorizontal ? Position.Right : Position.Bottom;
|
||||
|
||||
// 返回带有完整布局属性的节点对象
|
||||
return {
|
||||
...node,
|
||||
width,
|
||||
height,
|
||||
hidden,
|
||||
position: fixPosition({
|
||||
...position,
|
||||
width: widthWithDefault,
|
||||
height: heightWithDefault,
|
||||
}),
|
||||
style: {
|
||||
...node.style,
|
||||
opacity: hidden ? 0 : 1,
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* 边布局计算函数
|
||||
* @description 根据给定的边信息和可见性参数,计算边的最终布局属性
|
||||
* @param props 布局参数对象
|
||||
* @param props.edge 需要布局的边对象
|
||||
* @param props.visibility 边的可见性,'visible'表示可见,其他值表示隐藏
|
||||
* @returns 返回计算好布局属性的边对象
|
||||
*/
|
||||
export const getEdgeLayouted = (props: {
|
||||
edge: Edge;
|
||||
visibility: LayoutVisibility;
|
||||
}) => {
|
||||
const { edge, visibility } = props;
|
||||
const hidden = visibility !== "visible";
|
||||
|
||||
// 返回带有完整布局属性的边对象
|
||||
return {
|
||||
...edge,
|
||||
hidden,
|
||||
markerEnd: {
|
||||
type: MarkerType.ArrowClosed, // 设置箭头样式为闭合箭头
|
||||
},
|
||||
style: {
|
||||
...edge.style,
|
||||
opacity: hidden ? 0 : 1,
|
||||
},
|
||||
};
|
||||
};
|
||||
|
|
@ -1,121 +0,0 @@
|
|||
import { graphStratify, sugiyama } from "d3-dag";
|
||||
import { getIncomers, type Node } from "@xyflow/react";
|
||||
import { getEdgeLayouted, getNodeLayouted, getNodeSize } from "../../metadata";
|
||||
import { LayoutAlgorithm, LayoutAlgorithmProps } from "..";
|
||||
type NodeWithPosition = Node & { x: number; y: number };
|
||||
|
||||
// Since d3-dag layout algorithm does not support multiple root nodes,
|
||||
// we attach the sub-workflows to the global rootNode.
|
||||
const rootNode: NodeWithPosition = {
|
||||
id: "#root",
|
||||
x: 0,
|
||||
y: 0,
|
||||
position: { x: 0, y: 0 },
|
||||
data: {} as any,
|
||||
};
|
||||
|
||||
const algorithms = {
|
||||
"d3-dag": "d3-dag",
|
||||
"ds-dag(s)": "ds-dag(s)",
|
||||
};
|
||||
|
||||
export type D3DAGLayoutAlgorithms = "d3-dag" | "ds-dag(s)";
|
||||
|
||||
export const layoutD3DAG = async (
|
||||
props: LayoutAlgorithmProps & { algorithm?: D3DAGLayoutAlgorithms }
|
||||
) => {
|
||||
const {
|
||||
nodes,
|
||||
edges,
|
||||
direction,
|
||||
visibility,
|
||||
spacing,
|
||||
algorithm = "d3-dag",
|
||||
} = props;
|
||||
const isHorizontal = direction === "horizontal";
|
||||
|
||||
const initialNodes = [] as NodeWithPosition[];
|
||||
let maxNodeWidth = 0;
|
||||
let maxNodeHeight = 0;
|
||||
for (const node of nodes) {
|
||||
const { widthWithDefault, heightWithDefault } = getNodeSize(node);
|
||||
initialNodes.push({
|
||||
...node,
|
||||
...node.position,
|
||||
width: widthWithDefault,
|
||||
height: heightWithDefault,
|
||||
});
|
||||
maxNodeWidth = Math.max(maxNodeWidth, widthWithDefault);
|
||||
maxNodeHeight = Math.max(maxNodeHeight, heightWithDefault);
|
||||
}
|
||||
|
||||
// Since d3-dag does not support horizontal layout,
|
||||
// we swap the width and height of nodes and interchange x and y mappings based on the layout direction.
|
||||
const nodeSize: any = isHorizontal
|
||||
? [maxNodeHeight + spacing.y, maxNodeWidth + spacing.x]
|
||||
: [maxNodeWidth + spacing.x, maxNodeHeight + spacing.y];
|
||||
|
||||
const getParentIds = (node: Node) => {
|
||||
if (node.id === rootNode.id) {
|
||||
return undefined;
|
||||
}
|
||||
// Node without input is the root node of sub-workflow, and we should connect it to the rootNode
|
||||
const incomers = getIncomers(node, nodes, edges);
|
||||
if (incomers.length < 1) {
|
||||
return [rootNode.id];
|
||||
}
|
||||
return algorithm === "d3-dag"
|
||||
? [incomers[0]?.id]
|
||||
: incomers.map((e) => e.id);
|
||||
};
|
||||
|
||||
const stratify = graphStratify();
|
||||
const dag = stratify(
|
||||
[rootNode, ...initialNodes].map((node) => {
|
||||
return {
|
||||
id: node.id,
|
||||
parentIds: getParentIds(node),
|
||||
};
|
||||
})
|
||||
);
|
||||
|
||||
const layout = sugiyama().nodeSize(nodeSize);
|
||||
layout(dag);
|
||||
|
||||
const layoutNodes = new Map<string, any>();
|
||||
for (const node of dag.nodes()) {
|
||||
layoutNodes.set(node.data.id, node);
|
||||
}
|
||||
|
||||
return {
|
||||
nodes: nodes.map((node) => {
|
||||
const { x, y } = layoutNodes.get(node.id);
|
||||
// Interchange x and y mappings based on the layout direction.
|
||||
const position = isHorizontal ? { x: y, y: x } : { x, y };
|
||||
return getNodeLayouted({
|
||||
node,
|
||||
position,
|
||||
direction,
|
||||
visibility,
|
||||
fixPosition: ({ x, y, width, height }) => {
|
||||
// This algorithm uses the center coordinate of the node as the reference point,
|
||||
// which needs adjustment for ReactFlow's topLeft coordinate system.
|
||||
return {
|
||||
x: x - width / 2,
|
||||
y: y - height / 2,
|
||||
};
|
||||
},
|
||||
});
|
||||
}),
|
||||
edges: edges.map((edge) => getEdgeLayouted({ edge, visibility })),
|
||||
};
|
||||
};
|
||||
|
||||
export const kD3DAGAlgorithms: Record<string, LayoutAlgorithm> = Object.keys(
|
||||
algorithms
|
||||
).reduce((pre, algorithm) => {
|
||||
pre[algorithm] = (props: any) => {
|
||||
return layoutD3DAG({ ...props, algorithm });
|
||||
};
|
||||
return pre;
|
||||
}, {} as any);
|
||||
|
|
@ -1,89 +0,0 @@
|
|||
// Based on: https://github.com/flanksource/flanksource-ui/blob/75b35591d3bbc7d446fa326d0ca7536790f38d88/src/ui/Graphs/Layouts/algorithms/d3-hierarchy.ts
|
||||
|
||||
import { stratify, tree, type HierarchyPointNode } from "d3-hierarchy";
|
||||
import {getIncomers, Node} from "@xyflow/react"
|
||||
import { LayoutAlgorithm } from "..";
|
||||
import { getEdgeLayouted, getNodeLayouted, getNodeSize } from "../../metadata";
|
||||
type NodeWithPosition = Node & { x: number; y: number };
|
||||
|
||||
const layout = tree<NodeWithPosition>().separation(() => 1);
|
||||
|
||||
// Since d3-hierarchy layout algorithm does not support multiple root nodes,
|
||||
// we attach the sub-workflows to the global rootNode.
|
||||
const rootNode: NodeWithPosition = {
|
||||
id: "#root",
|
||||
x: 0,
|
||||
y: 0,
|
||||
position: { x: 0, y: 0 },
|
||||
data: {} as any,
|
||||
};
|
||||
|
||||
export const layoutD3Hierarchy: LayoutAlgorithm = async (props) => {
|
||||
const { nodes, edges, direction, visibility, spacing } = props;
|
||||
const isHorizontal = direction === "horizontal";
|
||||
|
||||
const initialNodes = [] as NodeWithPosition[];
|
||||
let maxNodeWidth = 0;
|
||||
let maxNodeHeight = 0;
|
||||
for (const node of nodes) {
|
||||
const { widthWithDefault, heightWithDefault } = getNodeSize(node);
|
||||
initialNodes.push({
|
||||
...node,
|
||||
...node.position,
|
||||
width: widthWithDefault,
|
||||
height: heightWithDefault,
|
||||
});
|
||||
maxNodeWidth = Math.max(maxNodeWidth, widthWithDefault);
|
||||
maxNodeHeight = Math.max(maxNodeHeight, heightWithDefault);
|
||||
}
|
||||
|
||||
// Since d3-hierarchy does not support horizontal layout,
|
||||
// we swap the width and height of nodes and interchange x and y mappings based on the layout direction.
|
||||
const nodeSize: [number, number] = isHorizontal
|
||||
? [maxNodeHeight + spacing.y, maxNodeWidth + spacing.x]
|
||||
: [maxNodeWidth + spacing.x, maxNodeHeight + spacing.y];
|
||||
|
||||
layout.nodeSize(nodeSize);
|
||||
|
||||
const getParentId = (node: Node) => {
|
||||
if (node.id === rootNode.id) {
|
||||
return undefined;
|
||||
}
|
||||
// Node without input is the root node of sub-workflow, and we should connect it to the rootNode
|
||||
const incomers = getIncomers(node, nodes, edges);
|
||||
return incomers[0]?.id || rootNode.id;
|
||||
};
|
||||
|
||||
const hierarchy = stratify<NodeWithPosition>()
|
||||
.id((d) => d.id)
|
||||
.parentId(getParentId)([rootNode, ...initialNodes]);
|
||||
|
||||
const root = layout(hierarchy);
|
||||
const layoutNodes = new Map<string, HierarchyPointNode<NodeWithPosition>>();
|
||||
for (const node of root) {
|
||||
layoutNodes.set(node.id!, node);
|
||||
}
|
||||
|
||||
return {
|
||||
nodes: nodes.map((node) => {
|
||||
const { x, y } = layoutNodes.get(node.id)!;
|
||||
// Interchange x and y mappings based on the layout direction.
|
||||
const position = isHorizontal ? { x: y, y: x } : { x, y };
|
||||
return getNodeLayouted({
|
||||
node,
|
||||
position,
|
||||
direction,
|
||||
visibility,
|
||||
fixPosition: ({ x, y, width, height }) => {
|
||||
// This algorithm uses the center coordinate of the node as the reference point,
|
||||
// which needs adjustment for ReactFlow's topLeft coordinate system.
|
||||
return {
|
||||
x: x - width / 2,
|
||||
y: y - height / 2,
|
||||
};
|
||||
},
|
||||
});
|
||||
}),
|
||||
edges: edges.map((edge) => getEdgeLayouted({ edge, visibility })),
|
||||
};
|
||||
};
|
||||
|
|
@ -1,122 +0,0 @@
|
|||
import dagre from "@dagrejs/dagre";
|
||||
import { LayoutAlgorithm } from "..";
|
||||
import { getIncomers, Node } from "@xyflow/react";
|
||||
import { getEdgeLayouted, getNodeLayouted, getNodeSize } from "../../metadata";
|
||||
import { randomInt } from "../../../utils/base";
|
||||
|
||||
// 布局配置常量
|
||||
const LAYOUT_CONFIG = {
|
||||
VIRTUAL_ROOT_ID: '#root',
|
||||
VIRTUAL_NODE_SIZE: 1,
|
||||
RANKER: 'tight-tree',
|
||||
} as const;
|
||||
|
||||
// 创建并配置 dagre 图实例
|
||||
const createDagreGraph = () => {
|
||||
const graph = new dagre.graphlib.Graph();
|
||||
graph.setDefaultEdgeLabel(() => ({}));
|
||||
return graph;
|
||||
};
|
||||
|
||||
// 获取布局方向配置
|
||||
const getLayoutConfig = (
|
||||
direction: 'horizontal' | 'vertical',
|
||||
spacing: { x: number, y: number },
|
||||
graph: dagre.graphlib.Graph
|
||||
) => ({
|
||||
nodesep: direction === 'horizontal' ? spacing.y : spacing.x,
|
||||
ranksep: direction === 'horizontal' ? spacing.x : spacing.y,
|
||||
ranker: LAYOUT_CONFIG.RANKER,
|
||||
rankdir: direction === 'horizontal' ? 'LR' : 'TB',
|
||||
|
||||
});
|
||||
|
||||
// 查找根节点
|
||||
const findRootNodes = (nodes: Node[], edges: any[]): Node[] =>
|
||||
nodes.filter(node => getIncomers(node, nodes, edges).length < 1);
|
||||
|
||||
// 计算节点边界
|
||||
const calculateBounds = (nodes: Node[], graph: dagre.graphlib.Graph) => {
|
||||
const bounds = {
|
||||
minX: Number.POSITIVE_INFINITY,
|
||||
minY: Number.POSITIVE_INFINITY,
|
||||
maxX: Number.NEGATIVE_INFINITY,
|
||||
maxY: Number.NEGATIVE_INFINITY,
|
||||
};
|
||||
|
||||
nodes.forEach(node => {
|
||||
const pos = graph.node(node.id);
|
||||
if (pos) {
|
||||
bounds.minX = Math.min(bounds.minX, pos.x);
|
||||
bounds.minY = Math.min(bounds.minY, pos.y);
|
||||
bounds.maxX = Math.max(bounds.maxX, pos.x);
|
||||
bounds.maxY = Math.max(bounds.maxY, pos.y);
|
||||
}
|
||||
});
|
||||
|
||||
return bounds;
|
||||
};
|
||||
|
||||
export const layoutDagreTree: LayoutAlgorithm = async ({
|
||||
nodes,
|
||||
edges,
|
||||
direction,
|
||||
visibility,
|
||||
spacing
|
||||
}) => {
|
||||
const dagreGraph = createDagreGraph();
|
||||
|
||||
// 设置图的布局参数
|
||||
dagreGraph.setGraph(getLayoutConfig(direction, spacing, dagreGraph));
|
||||
|
||||
// 添加节点
|
||||
nodes.forEach((node) => {
|
||||
const { widthWithDefault, heightWithDefault } = getNodeSize(node);
|
||||
dagreGraph.setNode(node.id, {
|
||||
width: widthWithDefault,
|
||||
height: heightWithDefault,
|
||||
order: randomInt(0, 10)
|
||||
});
|
||||
});
|
||||
|
||||
// 添加边
|
||||
edges.forEach(edge => dagreGraph.setEdge(edge.source, edge.target));
|
||||
|
||||
// 处理多个子工作流的情况
|
||||
const rootNodes = findRootNodes(nodes, edges);
|
||||
if (rootNodes.length > 1) {
|
||||
dagreGraph.setNode(LAYOUT_CONFIG.VIRTUAL_ROOT_ID, {
|
||||
width: LAYOUT_CONFIG.VIRTUAL_NODE_SIZE,
|
||||
height: LAYOUT_CONFIG.VIRTUAL_NODE_SIZE,
|
||||
rank: -1 // 确保虚拟根节点排在最前面
|
||||
});
|
||||
rootNodes.forEach(node =>
|
||||
dagreGraph.setEdge(LAYOUT_CONFIG.VIRTUAL_ROOT_ID, node.id)
|
||||
);
|
||||
}
|
||||
|
||||
// 执行布局
|
||||
dagre.layout(dagreGraph);
|
||||
|
||||
// 移除虚拟根节点
|
||||
if (rootNodes.length > 1) {
|
||||
dagreGraph.removeNode(LAYOUT_CONFIG.VIRTUAL_ROOT_ID);
|
||||
}
|
||||
|
||||
// 计算边界并返回布局结果
|
||||
const bounds = calculateBounds(nodes, dagreGraph);
|
||||
|
||||
return {
|
||||
nodes: nodes.map(node => getNodeLayouted({
|
||||
node,
|
||||
position: dagreGraph.node(node.id),
|
||||
direction,
|
||||
visibility,
|
||||
fixPosition: ({ x, y, width, height }) => ({
|
||||
x: x - width / 2 - bounds.minX,
|
||||
y: y - height / 2 - bounds.minY,
|
||||
}),
|
||||
})),
|
||||
edges: edges.map(edge => getEdgeLayouted({ edge, visibility })),
|
||||
};
|
||||
};
|
||||
|
|
@ -1,128 +0,0 @@
|
|||
import ELK, { ElkNode } from "elkjs/lib/elk.bundled.js";
|
||||
import { getIncomers,Node } from "@xyflow/react";
|
||||
import { LayoutAlgorithm, LayoutAlgorithmProps } from "..";
|
||||
import { getEdgeLayouted, getNodeLayouted, getNodeSize } from "../../metadata";
|
||||
|
||||
const algorithms = {
|
||||
"elk-layered": "layered",
|
||||
"elk-mr-tree": "mrtree",
|
||||
};
|
||||
|
||||
const elk = new ELK({ algorithms: Object.values(algorithms) });
|
||||
|
||||
export type ELKLayoutAlgorithms = "elk-layered" | "elk-mr-tree";
|
||||
|
||||
export const layoutELK = async (
|
||||
props: LayoutAlgorithmProps & { algorithm?: ELKLayoutAlgorithms }
|
||||
) => {
|
||||
const {
|
||||
nodes,
|
||||
edges,
|
||||
direction,
|
||||
visibility,
|
||||
spacing,
|
||||
algorithm = "elk-mr-tree",
|
||||
} = props;
|
||||
const isHorizontal = direction === "horizontal";
|
||||
|
||||
const subWorkflowRootNodes: Node[] = [];
|
||||
const layoutNodes = nodes.map((node) => {
|
||||
const incomers = getIncomers(node, nodes, edges);
|
||||
if (incomers.length < 1) {
|
||||
// Node without input is the root node of sub-workflow
|
||||
subWorkflowRootNodes.push(node);
|
||||
}
|
||||
const { widthWithDefault, heightWithDefault } = getNodeSize(node);
|
||||
const sourcePorts = node.data.sourceHandles.map((id) => ({
|
||||
id,
|
||||
properties: {
|
||||
side: isHorizontal ? "EAST" : "SOUTH",
|
||||
},
|
||||
}));
|
||||
const targetPorts = node.data.targetHandles.map((id) => ({
|
||||
id,
|
||||
properties: {
|
||||
side: isHorizontal ? "WEST" : "NORTH",
|
||||
},
|
||||
}));
|
||||
return {
|
||||
id: node.id,
|
||||
width: widthWithDefault,
|
||||
height: heightWithDefault,
|
||||
ports: [...targetPorts, ...sourcePorts],
|
||||
properties: {
|
||||
"org.eclipse.elk.portConstraints": "FIXED_ORDER",
|
||||
},
|
||||
};
|
||||
});
|
||||
|
||||
const layoutEdges = edges.map((edge) => {
|
||||
return {
|
||||
id: edge.id,
|
||||
sources: [edge.sourceHandle || edge.source],
|
||||
targets: [edge.targetHandle || edge.target],
|
||||
};
|
||||
});
|
||||
|
||||
// Connect sub-workflows' root nodes to the rootNode
|
||||
const rootNode: any = { id: "#root", width: 1, height: 1 };
|
||||
layoutNodes.push(rootNode);
|
||||
for (const subWorkflowRootNode of subWorkflowRootNodes) {
|
||||
layoutEdges.push({
|
||||
id: `${rootNode.id}-${subWorkflowRootNode.id}`,
|
||||
sources: [rootNode.id],
|
||||
targets: [subWorkflowRootNode.id],
|
||||
});
|
||||
}
|
||||
|
||||
const layouted = await elk
|
||||
.layout({
|
||||
id: "@root",
|
||||
children: layoutNodes,
|
||||
edges: layoutEdges,
|
||||
layoutOptions: {
|
||||
// - https://www.eclipse.org/elk/reference/algorithms.html
|
||||
"elk.algorithm": algorithms[algorithm],
|
||||
"elk.direction": isHorizontal ? "RIGHT" : "DOWN",
|
||||
// - https://www.eclipse.org/elk/reference/options.html
|
||||
"elk.spacing.nodeNode": isHorizontal
|
||||
? spacing.y.toString()
|
||||
: spacing.x.toString(),
|
||||
"elk.layered.spacing.nodeNodeBetweenLayers": isHorizontal
|
||||
? spacing.x.toString()
|
||||
: spacing.y.toString(),
|
||||
},
|
||||
})
|
||||
.catch((e) => {
|
||||
console.log("❌ ELK layout failed", e);
|
||||
}) as ElkNode
|
||||
|
||||
if (!layouted?.children) {
|
||||
return;
|
||||
}
|
||||
|
||||
const layoutedNodePositions = layouted.children.reduce((pre, v) => {
|
||||
pre[v.id] = {
|
||||
x: v.x ?? 0,
|
||||
y: v.y ?? 0,
|
||||
};
|
||||
return pre;
|
||||
}, {} as Record<string, { x: number; y: number }>);
|
||||
|
||||
return {
|
||||
nodes: nodes.map((node) => {
|
||||
const position = layoutedNodePositions[node.id];
|
||||
return getNodeLayouted({ node, position, direction, visibility });
|
||||
}),
|
||||
edges: edges.map((edge) => getEdgeLayouted({ edge, visibility })),
|
||||
};
|
||||
};
|
||||
|
||||
export const kElkAlgorithms: Record<string, LayoutAlgorithm> = Object.keys(
|
||||
algorithms
|
||||
).reduce((pre, algorithm) => {
|
||||
pre[algorithm] = (props: any) => {
|
||||
return layoutELK({ ...props, algorithm });
|
||||
};
|
||||
return pre;
|
||||
}, {} as any);
|
||||
|
|
@ -1,20 +0,0 @@
|
|||
import { LayoutAlgorithm } from "..";
|
||||
import { getEdgeLayouted, getNodeLayouted } from "../../metadata";
|
||||
|
||||
/**
|
||||
* Positions all nodes at the origin (0,0) in the layout.
|
||||
*/
|
||||
export const layoutOrigin: LayoutAlgorithm = async (props) => {
|
||||
const { nodes, edges, direction, visibility } = props;
|
||||
return {
|
||||
nodes: nodes.map((node) => {
|
||||
return getNodeLayouted({
|
||||
node,
|
||||
direction,
|
||||
visibility,
|
||||
position: { x: 0, y: 0 },
|
||||
});
|
||||
}),
|
||||
edges: edges.map((edge) => getEdgeLayouted({ edge, visibility })),
|
||||
};
|
||||
};
|
||||
|
|
@ -1,149 +0,0 @@
|
|||
/**
|
||||
* 图形布局模块
|
||||
*
|
||||
* 该模块提供了一系列用于处理 ReactFlow 图形布局的工具和算法。
|
||||
* 支持多种布局算法,包括原始布局、树形布局、层次布局等。
|
||||
* 主要用于自动计算和调整图形中节点和边的位置。
|
||||
*/
|
||||
|
||||
import { ReactFlowGraph } from "../../types";
|
||||
import { removeEmpty } from "../../utils/base";
|
||||
import { D3DAGLayoutAlgorithms, kD3DAGAlgorithms } from "./algorithms/d3-dag";
|
||||
import { layoutD3Hierarchy } from "./algorithms/d3-hierarchy";
|
||||
import { layoutDagreTree } from "./algorithms/dagre-tree";
|
||||
import { ELKLayoutAlgorithms, kElkAlgorithms } from "./algorithms/elk";
|
||||
import { layoutOrigin } from "./algorithms/origin";
|
||||
|
||||
/**
|
||||
* 布局方向类型
|
||||
* vertical: 垂直布局
|
||||
* horizontal: 水平布局
|
||||
*/
|
||||
export type LayoutDirection = "vertical" | "horizontal";
|
||||
|
||||
/**
|
||||
* 布局可见性类型
|
||||
* visible: 可见
|
||||
* hidden: 隐藏
|
||||
*/
|
||||
export type LayoutVisibility = "visible" | "hidden";
|
||||
|
||||
/**
|
||||
* 布局间距配置接口
|
||||
* x: 水平间距
|
||||
* y: 垂直间距
|
||||
*/
|
||||
export interface LayoutSpacing {
|
||||
x: number;
|
||||
y: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* ReactFlow 布局配置接口
|
||||
* 定义了布局所需的各项参数
|
||||
*/
|
||||
export type ReactFlowLayoutConfig = {
|
||||
algorithm: LayoutAlgorithms; // 使用的布局算法
|
||||
direction: LayoutDirection; // 布局方向
|
||||
spacing: LayoutSpacing; // 节点间距
|
||||
/**
|
||||
* 布局可见性配置
|
||||
* 在首次布局时如果节点大小不可用,可能需要隐藏布局
|
||||
*/
|
||||
visibility: LayoutVisibility;
|
||||
/**
|
||||
* 是否反转源节点手柄顺序
|
||||
*/
|
||||
reverseSourceHandles: boolean;
|
||||
autoCenterRoot: boolean
|
||||
};
|
||||
|
||||
/**
|
||||
* 布局算法所需的属性类型
|
||||
* 继承自 ReactFlowGraph 并包含布局配置(除算法外)
|
||||
*/
|
||||
export type LayoutAlgorithmProps = ReactFlowGraph &
|
||||
Omit<ReactFlowLayoutConfig, "algorithm">;
|
||||
|
||||
/**
|
||||
* 布局算法函数类型定义
|
||||
* 接收布局属性作为参数,返回布局后的图形数据
|
||||
*/
|
||||
export type LayoutAlgorithm = (
|
||||
props: LayoutAlgorithmProps
|
||||
) => Promise<ReactFlowGraph | undefined>;
|
||||
|
||||
/**
|
||||
* 可用的布局算法映射表
|
||||
* 包含所有支持的布局算法实现
|
||||
*/
|
||||
export const layoutAlgorithms: Record<string, LayoutAlgorithm> = {
|
||||
origin: layoutOrigin,
|
||||
"dagre-tree": layoutDagreTree,
|
||||
"d3-hierarchy": layoutD3Hierarchy,
|
||||
...kElkAlgorithms,
|
||||
...kD3DAGAlgorithms,
|
||||
};
|
||||
|
||||
/**
|
||||
* 默认布局配置
|
||||
*/
|
||||
export const defaultLayoutConfig: ReactFlowLayoutConfig = {
|
||||
algorithm: "dagre-tree", // 默认使用 elk-mr-tree 算法
|
||||
direction: "horizontal", // 默认垂直布局
|
||||
visibility: "visible", // 默认可见
|
||||
spacing: { x: 120, y: 120 }, // 默认间距
|
||||
reverseSourceHandles: false, // 默认不反转源节点手柄
|
||||
autoCenterRoot: false
|
||||
};
|
||||
|
||||
/**
|
||||
* 支持的布局算法类型联合
|
||||
*/
|
||||
export type LayoutAlgorithms =
|
||||
| "origin"
|
||||
| "dagre-tree"
|
||||
| "d3-hierarchy"
|
||||
| ELKLayoutAlgorithms
|
||||
| D3DAGLayoutAlgorithms;
|
||||
|
||||
/**
|
||||
* ReactFlow 布局类型
|
||||
* 包含图形数据和可选的布局配置
|
||||
*/
|
||||
export type ReactFlowLayout = ReactFlowGraph & Partial<ReactFlowLayoutConfig>;
|
||||
|
||||
/**
|
||||
* 执行 ReactFlow 图形布局的主函数
|
||||
*
|
||||
* @param options - 布局选项,包含图形数据和布局配置
|
||||
* @returns 返回布局后的图形数据
|
||||
*
|
||||
* 函数流程:
|
||||
* 1. 合并默认配置和用户配置
|
||||
* 2. 获取对应的布局算法
|
||||
* 3. 执行布局计算
|
||||
* 4. 如果布局失败,回退到原始布局
|
||||
*/
|
||||
export const layoutReactFlow = async (
|
||||
options: ReactFlowLayout
|
||||
): Promise<ReactFlowGraph> => {
|
||||
// 合并配置,移除空值
|
||||
const config = { ...defaultLayoutConfig, ...removeEmpty(options) };
|
||||
const { nodes = [], edges = [] } = config;
|
||||
|
||||
// 获取并执行布局算法
|
||||
const layout = layoutAlgorithms[config.algorithm];
|
||||
let result = await layout({ ...config, nodes, edges });
|
||||
|
||||
// 布局失败时回退处理
|
||||
if (!result) {
|
||||
result = await layoutReactFlow({
|
||||
...config,
|
||||
nodes,
|
||||
edges,
|
||||
algorithm: "origin",
|
||||
});
|
||||
}
|
||||
return result!;
|
||||
};
|
||||
|
|
@ -1,168 +0,0 @@
|
|||
import { memo, useCallback, useEffect, useRef, useState } from 'react';
|
||||
import { Handle, Position, NodeProps, Node } from '@xyflow/react';
|
||||
import useGraphStore from '../store';
|
||||
import { shallow } from 'zustand/shallow';
|
||||
import { GraphState } from '../types';
|
||||
|
||||
export type GraphNode = Node<{
|
||||
label: string;
|
||||
color?: string;
|
||||
level?: number;
|
||||
}, 'graph-node'>;
|
||||
|
||||
const getLevelStyles = (level: number = 0) => {
|
||||
const styles = {
|
||||
0: {
|
||||
container: 'bg-[#2B4B6F] text-white',
|
||||
handle: 'bg-[#2B4B6F]',
|
||||
fontSize: 'text-lg'
|
||||
},
|
||||
1: {
|
||||
container: 'bg-blue-300 text-white',
|
||||
handle: 'bg-[#3A5F84]',
|
||||
fontSize: 'text-base'
|
||||
},
|
||||
2: {
|
||||
container: 'bg-gray-100',
|
||||
handle: 'bg-[#496F96]',
|
||||
fontSize: 'text-base'
|
||||
}
|
||||
};
|
||||
return styles[level as keyof typeof styles]
|
||||
};
|
||||
|
||||
|
||||
const baseTextStyles = `
|
||||
text-center
|
||||
break-words
|
||||
whitespace-pre-wrap
|
||||
`;
|
||||
const handleStyles = `
|
||||
w-2.5 h-2.5
|
||||
border-2 border-white/80
|
||||
rounded-full
|
||||
transition-colors
|
||||
duration-200
|
||||
opacity-80
|
||||
hover:opacity-100
|
||||
`;
|
||||
const selector = (store: GraphState) => ({
|
||||
updateNode: store.updateNode,
|
||||
});
|
||||
|
||||
export const GraphNode = memo(({ id, selected, data, isConnectable }: NodeProps<GraphNode>) => {
|
||||
const { updateNode } = useGraphStore(selector, shallow);
|
||||
const [isEditing, setIsEditing] = useState(false);
|
||||
const levelStyles = getLevelStyles(data.level);
|
||||
const [inputValue, setInputValue] = useState(data.label);
|
||||
const [isComposing, setIsComposing] = useState(false);
|
||||
const updateTextareaHeight = useCallback((element: HTMLTextAreaElement) => {
|
||||
element.style.height = 'auto';
|
||||
element.style.height = `${element.scrollHeight}px`;
|
||||
}, []);
|
||||
const handleChange = useCallback((evt: React.ChangeEvent<HTMLTextAreaElement>) => {
|
||||
const newValue = evt.target.value;
|
||||
setInputValue(newValue);
|
||||
updateNode(id, { label: newValue });
|
||||
updateTextareaHeight(evt.target);
|
||||
}, [updateNode, id, updateTextareaHeight]);
|
||||
const handleKeyDown = useCallback((evt: React.KeyboardEvent<HTMLTextAreaElement>) => {
|
||||
if (!isEditing) {
|
||||
if (/^[a-zA-Z0-9]$/.test(evt.key)) {
|
||||
setIsEditing(true);
|
||||
setInputValue(evt.key); // 将第一个字符添加到现有内容后
|
||||
updateNode(id, { label: evt.key });
|
||||
}
|
||||
if (evt.key === ' ') {
|
||||
setIsEditing(true);
|
||||
setInputValue(data.label); // 将第一个字符添加到现有内容后
|
||||
updateNode(id, { label: data.label });
|
||||
}
|
||||
evt.preventDefault(); // 阻止默认行为
|
||||
evt.stopPropagation(); // 阻止事件冒泡
|
||||
} else if (isEditing && evt.key === 'Enter' && !evt.shiftKey && !isComposing) {
|
||||
setIsEditing(false);
|
||||
evt.preventDefault();
|
||||
}
|
||||
}, [isEditing, isComposing, data.label, id, updateNode]);
|
||||
const handleDoubleClick = useCallback(() => {
|
||||
setIsEditing(true);
|
||||
}, []);
|
||||
const handleBlur = useCallback(() => setIsEditing(false), []);
|
||||
// 添加 ref 来获取父元素
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
const textareaRef = useRef<HTMLTextAreaElement | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (isEditing && textareaRef.current) {
|
||||
updateTextareaHeight(textareaRef.current);
|
||||
// 聚焦并将光标移到末尾
|
||||
textareaRef.current.focus();
|
||||
const length = textareaRef.current.value.length;
|
||||
textareaRef.current.setSelectionRange(length, length);
|
||||
}
|
||||
}, [isEditing, updateTextareaHeight]);
|
||||
|
||||
return (
|
||||
<div
|
||||
ref={containerRef}
|
||||
className={`
|
||||
flex items-center justify-center
|
||||
rounded-md
|
||||
|
||||
max-w-64
|
||||
${levelStyles.container}
|
||||
${selected ? 'ring-2 ring-[#3688FF]/30 shadow-lg' : ''}
|
||||
${isEditing ? 'ring-2 ring-white/50' : ''}
|
||||
`}
|
||||
>
|
||||
|
||||
<textarea
|
||||
ref={textareaRef}
|
||||
defaultValue={data.label}
|
||||
onChange={(evt) => handleChange(evt as any)}
|
||||
onBlur={handleBlur}
|
||||
value={inputValue}
|
||||
onKeyDown={handleKeyDown}
|
||||
onCompositionStart={() => setIsComposing(true)}
|
||||
onCompositionEnd={() => setIsComposing(false)}
|
||||
className={`
|
||||
${isEditing ? 'nodrag' : ''}
|
||||
bg-transparent
|
||||
focus:outline-none
|
||||
${baseTextStyles}
|
||||
${levelStyles.fontSize}
|
||||
resize-none
|
||||
overflow-hidden
|
||||
${!isEditing ? 'cursor-default' : ''}
|
||||
`}
|
||||
placeholder={isEditing ? "输入节点内容..." : "双击编辑"}
|
||||
rows={1}
|
||||
readOnly={!isEditing}
|
||||
onDoubleClick={handleDoubleClick}
|
||||
onInput={(e) => {
|
||||
const target = e.target as HTMLTextAreaElement;
|
||||
target.style.height = 'auto';
|
||||
target.style.height = `${target.scrollHeight}px`;
|
||||
}}
|
||||
/>
|
||||
|
||||
<Handle
|
||||
type="target"
|
||||
position={Position.Left}
|
||||
isConnectable={isConnectable}
|
||||
id="target"
|
||||
className={`${handleStyles} -ml-[6px] ${levelStyles.handle}`}
|
||||
/>
|
||||
<Handle
|
||||
type="source"
|
||||
position={Position.Right}
|
||||
isConnectable={isConnectable}
|
||||
id="source"
|
||||
className={`${handleStyles} -mr-[6px] ${levelStyles.handle}`}
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
GraphNode.displayName = 'GraphNode';
|
||||
|
|
@ -1,158 +0,0 @@
|
|||
import { addEdge, applyNodeChanges, applyEdgeChanges, Node, Edge, Connection, NodeChange, EdgeChange } from '@xyflow/react';
|
||||
import { createWithEqualityFn } from 'zustand/traditional';
|
||||
import { nanoid } from 'nanoid';
|
||||
import debounce from 'lodash/debounce';
|
||||
import { GraphState } from './types';
|
||||
import { initialEdges, initialNodes } from './data';
|
||||
|
||||
const MAX_HISTORY_LENGTH = 100;
|
||||
const HISTORY_DEBOUNCE_MS = 100;
|
||||
|
||||
const useGraphStore = createWithEqualityFn<GraphState>((set, get) => {
|
||||
return {
|
||||
past: [],
|
||||
future: [],
|
||||
present: {
|
||||
nodes: initialNodes,
|
||||
edges: initialEdges,
|
||||
},
|
||||
record: (callback: () => void) => {
|
||||
const currentState = get().present;
|
||||
|
||||
console.group('Recording new state');
|
||||
console.log('Current state:', currentState);
|
||||
console.log('Past states count:', get().past.length);
|
||||
console.log('Future states count:', get().future.length);
|
||||
|
||||
set(state => {
|
||||
const newPast = [...state.past.slice(-MAX_HISTORY_LENGTH), currentState];
|
||||
console.log('New past states count:', newPast.length);
|
||||
console.groupEnd();
|
||||
return {
|
||||
past: newPast,
|
||||
future: [],
|
||||
};
|
||||
});
|
||||
|
||||
callback();
|
||||
},
|
||||
|
||||
undo: () => {
|
||||
const { past, present } = get();
|
||||
console.group('Undo operation');
|
||||
console.log('Current state:', present);
|
||||
console.log('Past states count:', past.length);
|
||||
|
||||
if (past.length === 0) {
|
||||
console.warn('Cannot undo - no past states available');
|
||||
console.groupEnd();
|
||||
return;
|
||||
}
|
||||
|
||||
const previous = past[past.length - 1];
|
||||
const newPast = past.slice(0, past.length - 1);
|
||||
|
||||
console.log('Reverting to previous state:', previous);
|
||||
console.log('New past states count:', newPast.length);
|
||||
console.log('New future states count:', get().future.length + 1);
|
||||
console.groupEnd();
|
||||
|
||||
set({
|
||||
past: newPast,
|
||||
present: previous,
|
||||
future: [present, ...get().future],
|
||||
});
|
||||
},
|
||||
|
||||
redo: () => {
|
||||
const { future, present } = get();
|
||||
console.group('Redo operation');
|
||||
console.log('Current state:', present);
|
||||
console.log('Future states count:', future.length);
|
||||
|
||||
if (future.length === 0) {
|
||||
console.warn('Cannot redo - no future states available');
|
||||
console.groupEnd();
|
||||
return;
|
||||
}
|
||||
|
||||
const next = future[0];
|
||||
const newFuture = future.slice(1);
|
||||
|
||||
console.log('Moving to next state:', next);
|
||||
console.log('New past states count:', get().past.length + 1);
|
||||
console.log('New future states count:', newFuture.length);
|
||||
console.groupEnd();
|
||||
|
||||
set({
|
||||
past: [...get().past, present],
|
||||
present: next,
|
||||
future: newFuture,
|
||||
});
|
||||
},
|
||||
setNodes: (nodes: Node[]) => {
|
||||
set(state => ({
|
||||
present: {
|
||||
nodes: nodes,
|
||||
edges: state.present.edges
|
||||
}
|
||||
}));
|
||||
},
|
||||
setEdges: (edges: Edge[]) => {
|
||||
set(state => ({
|
||||
present: {
|
||||
nodes: state.present.nodes,
|
||||
edges: edges
|
||||
}
|
||||
}));
|
||||
},
|
||||
onNodesChange: (changes: NodeChange[]) => {
|
||||
set(state => ({
|
||||
present: {
|
||||
nodes: applyNodeChanges(changes, state.present.nodes),
|
||||
edges: state.present.edges
|
||||
}
|
||||
}))
|
||||
},
|
||||
|
||||
onEdgesChange: (changes: EdgeChange[]) => {
|
||||
|
||||
set(state => ({
|
||||
present: {
|
||||
nodes: state.present.nodes,
|
||||
edges: applyEdgeChanges(changes, state.present.edges)
|
||||
}
|
||||
}))
|
||||
},
|
||||
|
||||
canUndo: () => get().past.length > 0,
|
||||
canRedo: () => get().future.length > 0,
|
||||
|
||||
updateNode: (nodeId: string, data: any) => {
|
||||
const newNodes = get().present.nodes.map(node =>
|
||||
node.id === nodeId ? { ...node, data: { ...node.data, ...data } } : node
|
||||
);
|
||||
set({
|
||||
present: {
|
||||
nodes: newNodes,
|
||||
edges: get().present.edges
|
||||
}
|
||||
});
|
||||
},
|
||||
deleteNode: (nodeId: string) => {
|
||||
const newNodes = get().present.nodes.filter(node => node.id !== nodeId);
|
||||
const newEdges = get().present.edges.filter(
|
||||
edge => edge.source !== nodeId && edge.target !== nodeId
|
||||
);
|
||||
},
|
||||
|
||||
updateEdge: (edgeId: string, data: any) => {
|
||||
const newEdges = get().present.edges.map(edge =>
|
||||
edge.id === edgeId ? { ...edge, data: { ...edge.data, ...data } } : edge
|
||||
);
|
||||
},
|
||||
|
||||
};
|
||||
});
|
||||
|
||||
export default useGraphStore;
|
||||
|
|
@ -1,94 +0,0 @@
|
|||
import { Edge, NodeProps, Node, OnConnect, OnEdgesChange, OnNodesChange, Connection, NodeChange, EdgeChange, OnSelectionChangeParams, XYPosition } from "@xyflow/react";
|
||||
import { GraphEdge } from "./edges/GraphEdge";
|
||||
import { GraphNode } from "./nodes/GraphNode";
|
||||
import { ControlPoint } from "./layout/edge/point";
|
||||
import { ReactFlowLayout, ReactFlowLayoutConfig } from "./layout/node";
|
||||
// 添加新的类型定义
|
||||
export type HistoryState = {
|
||||
nodes: Node[];
|
||||
edges: Edge[];
|
||||
type: string; // 记录操作类型
|
||||
timestamp: number;
|
||||
};
|
||||
|
||||
export type GraphState = {
|
||||
past: Array<{ nodes: Node[], edges: Edge[] }>;
|
||||
present: {
|
||||
nodes: Node[];
|
||||
edges: Edge[];
|
||||
};
|
||||
future: Array<{ nodes: Node[], edges: Edge[] }>;
|
||||
canUndo: () => boolean;
|
||||
canRedo: () => boolean;
|
||||
onNodesChange: (changes: NodeChange[]) => void;
|
||||
onEdgesChange: (changes: EdgeChange[]) => void;
|
||||
updateNode: (id: string, data: any) => void;
|
||||
undo: () => void;
|
||||
redo: () => void;
|
||||
setNodes: (nodes: Node[]) => void;
|
||||
setEdges: (edges: Edge[]) => void;
|
||||
record: (callback: () => void) => void
|
||||
};
|
||||
export const nodeTypes = {
|
||||
'graph-node': GraphNode
|
||||
}
|
||||
|
||||
export const edgeTypes = {
|
||||
'graph-edge': GraphEdge
|
||||
}
|
||||
|
||||
export interface ReactFlowGraph {
|
||||
nodes: Node[]
|
||||
edges: Edge[]
|
||||
}
|
||||
export interface ReactFlowEdgePort {
|
||||
/**
|
||||
* Total number of edges in this direction (source or target).
|
||||
*/
|
||||
edges: number;
|
||||
/**
|
||||
* Number of ports
|
||||
*/
|
||||
portCount: number;
|
||||
/**
|
||||
* Port's index.
|
||||
*/
|
||||
portIndex: number;
|
||||
/**
|
||||
* Total number of Edges under the current port.
|
||||
*/
|
||||
edgeCount: number;
|
||||
/**
|
||||
* Index of the Edge under the current port.
|
||||
*/
|
||||
edgeIndex: number;
|
||||
}
|
||||
|
||||
export interface EdgeLayout {
|
||||
/**
|
||||
* SVG path for edge rendering
|
||||
*/
|
||||
path: string;
|
||||
/**
|
||||
* Control points on the edge.
|
||||
*/
|
||||
points: ControlPoint[];
|
||||
labelPosition: XYPosition;
|
||||
/**
|
||||
* Current layout dependent variables (re-layout when changed).
|
||||
*/
|
||||
deps?: any;
|
||||
/**
|
||||
* Potential control points on the edge, for debugging purposes only.
|
||||
*/
|
||||
inputPoints: ControlPoint[];
|
||||
}
|
||||
|
||||
export interface ReactFlowEdgeData {
|
||||
/**
|
||||
* Data related to the current edge's layout, such as control points.
|
||||
*/
|
||||
layout?: EdgeLayout;
|
||||
sourcePort: ReactFlowEdgePort;
|
||||
targetPort: ReactFlowEdgePort;
|
||||
}
|
||||
|
|
@ -1,144 +0,0 @@
|
|||
import { useCallback, useMemo } from "react";
|
||||
import { nanoid } from 'nanoid';
|
||||
import { shallow } from 'zustand/shallow';
|
||||
import { throttle } from 'lodash';
|
||||
import { Edge, Node, useReactFlow } from "@xyflow/react";
|
||||
import { GraphState } from "./types";
|
||||
import useGraphStore from "./store";
|
||||
|
||||
// Store selector
|
||||
const selector = (store: GraphState) => ({
|
||||
nodes: store.present.nodes,
|
||||
edges: store.present.edges,
|
||||
setNodes: store.setNodes,
|
||||
setEdges: store.setEdges,
|
||||
record: store.record
|
||||
});
|
||||
|
||||
// Helper functions
|
||||
const createNode = (label: string): Node => ({
|
||||
id: nanoid(6),
|
||||
type: 'graph-node',
|
||||
data: { label },
|
||||
position: { x: 0, y: 0 },
|
||||
});
|
||||
|
||||
const createEdge = (source: string, target: string): Edge => ({
|
||||
id: nanoid(6),
|
||||
source,
|
||||
target,
|
||||
type: 'graph-edge',
|
||||
});
|
||||
|
||||
export function useGraphOperation() {
|
||||
const store = useGraphStore(selector, shallow);
|
||||
const { addEdges, addNodes } = useReactFlow();
|
||||
|
||||
const selectedNodes = useMemo(() =>
|
||||
store.nodes.filter(node => node.selected),
|
||||
[store.nodes]
|
||||
);
|
||||
|
||||
// Find parent node ID for a given node
|
||||
const findParentId = useCallback((nodeId: string) => {
|
||||
const parentEdge = store.edges.find(edge => edge.target === nodeId);
|
||||
return parentEdge?.source;
|
||||
}, [store.edges]);
|
||||
|
||||
// Update node selection
|
||||
const updateNodeSelection = useCallback((nodeIds: string[]) => {
|
||||
return store.nodes.map(node => ({
|
||||
...node,
|
||||
selected: nodeIds.includes(node.id)
|
||||
}));
|
||||
}, [store.nodes]);
|
||||
|
||||
// Create new node and connect it
|
||||
const createConnectedNode = useCallback((parentId: string, deselectOthers = true) => {
|
||||
const newNode = createNode(`新节点${store.nodes.length}`);
|
||||
const newEdge = createEdge(parentId, newNode.id);
|
||||
|
||||
store.record(() => {
|
||||
addNodes({ ...newNode, selected: true });
|
||||
addEdges(newEdge);
|
||||
|
||||
if (deselectOthers) {
|
||||
store.setNodes(updateNodeSelection([newNode.id]));
|
||||
}
|
||||
});
|
||||
}, [store, addNodes, addEdges, updateNodeSelection]);
|
||||
|
||||
// Handle node creation operations
|
||||
const handleCreateChildNodes = useCallback(() => {
|
||||
if (selectedNodes.length === 0) return;
|
||||
|
||||
throttle(() => {
|
||||
selectedNodes.forEach(node => {
|
||||
if (node.id) createConnectedNode(node.id);
|
||||
});
|
||||
}, 300)();
|
||||
}, [selectedNodes, createConnectedNode]);
|
||||
|
||||
const handleCreateSiblingNodes = useCallback(() => {
|
||||
if (selectedNodes.length === 0) return;
|
||||
|
||||
throttle(() => {
|
||||
selectedNodes.forEach(node => {
|
||||
const parentId = findParentId(node.id) || node.id;
|
||||
createConnectedNode(parentId);
|
||||
});
|
||||
}, 300)();
|
||||
}, [selectedNodes, findParentId, createConnectedNode]);
|
||||
|
||||
const handleDeleteNodes = useCallback(() => {
|
||||
if (selectedNodes.length === 0) return;
|
||||
|
||||
const nodesToDelete = new Set<string>();
|
||||
|
||||
// Collect all nodes to delete including children
|
||||
const collectNodesToDelete = (nodeId: string) => {
|
||||
nodesToDelete.add(nodeId);
|
||||
store.edges
|
||||
.filter(edge => edge.source === nodeId)
|
||||
.forEach(edge => collectNodesToDelete(edge.target));
|
||||
};
|
||||
|
||||
selectedNodes.forEach(node => collectNodesToDelete(node.id));
|
||||
|
||||
store.record(() => {
|
||||
// Filter out deleted nodes and their edges
|
||||
const remainingNodes = store.nodes.filter(node => !nodesToDelete.has(node.id));
|
||||
const remainingEdges = store.edges.filter(edge =>
|
||||
!nodesToDelete.has(edge.source) && !nodesToDelete.has(edge.target)
|
||||
);
|
||||
|
||||
// Select next node (sibling or parent of first deleted node)
|
||||
const firstDeletedNode = selectedNodes[0];
|
||||
const parentId = findParentId(firstDeletedNode.id);
|
||||
|
||||
let nextSelectedId: string | undefined;
|
||||
if (parentId) {
|
||||
const siblingEdge = store.edges.find(edge =>
|
||||
edge.source === parentId &&
|
||||
!nodesToDelete.has(edge.target) &&
|
||||
edge.target !== firstDeletedNode.id
|
||||
);
|
||||
nextSelectedId = siblingEdge?.target || parentId;
|
||||
}
|
||||
|
||||
// Update nodes with new selection and set the remaining nodes
|
||||
const updatedNodes = remainingNodes.map(node => ({
|
||||
...node,
|
||||
selected: node.id === nextSelectedId
|
||||
}));
|
||||
|
||||
store.setNodes(updatedNodes);
|
||||
store.setEdges(remainingEdges);
|
||||
});
|
||||
}, [selectedNodes, store, findParentId]);
|
||||
return {
|
||||
handleCreateChildNodes,
|
||||
handleCreateSiblingNodes,
|
||||
handleDeleteNodes
|
||||
};
|
||||
}
|
||||
|
|
@ -1,44 +0,0 @@
|
|||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { shallow } from 'zustand/shallow';
|
||||
import { useGraphOperation } from './useGraphOperation';
|
||||
import useGraphStore from './store';
|
||||
import { GraphState } from './types';
|
||||
|
||||
const selector = (store: GraphState) => ({
|
||||
undo: store.undo,
|
||||
redo: store.redo
|
||||
});
|
||||
|
||||
export function useKeyboardCtrl() {
|
||||
const { undo, redo } = useGraphStore(selector, shallow);
|
||||
const {
|
||||
handleCreateChildNodes,
|
||||
handleCreateSiblingNodes,
|
||||
handleDeleteNodes
|
||||
} = useGraphOperation();
|
||||
|
||||
useHotkeys('tab', (e) => {
|
||||
e.preventDefault();
|
||||
handleCreateChildNodes();
|
||||
}, [handleCreateChildNodes]);
|
||||
|
||||
useHotkeys('enter', (e) => {
|
||||
e.preventDefault();
|
||||
handleCreateSiblingNodes();
|
||||
}, [handleCreateSiblingNodes]);
|
||||
|
||||
useHotkeys('ctrl+z', (e) => {
|
||||
e.preventDefault();
|
||||
undo();
|
||||
}, [undo]);
|
||||
|
||||
useHotkeys('ctrl+y', (e) => {
|
||||
e.preventDefault();
|
||||
redo();
|
||||
}, [redo]);
|
||||
|
||||
useHotkeys('delete', (e) => {
|
||||
e.preventDefault();
|
||||
handleDeleteNodes();
|
||||
}, [handleDeleteNodes]);
|
||||
}
|
||||
|
|
@ -1,147 +0,0 @@
|
|||
import { Position, Node, InternalNode } from "@xyflow/react";
|
||||
|
||||
/**
|
||||
* 定义交点的接口类型
|
||||
* 用于表示两条线段相交的坐标点
|
||||
*/
|
||||
interface IntersectionPoint {
|
||||
x: number; // 交点的x坐标
|
||||
y: number; // 交点的y坐标
|
||||
}
|
||||
|
||||
/**
|
||||
* 定义边缘连接参数的接口类型
|
||||
* 包含源节点和目标节点的连接位置信息
|
||||
*/
|
||||
interface EdgeParams {
|
||||
sx: number; // 源节点连接点x坐标
|
||||
sy: number; // 源节点连接点y坐标
|
||||
tx: number; // 目标节点连接点x坐标
|
||||
ty: number; // 目标节点连接点y坐标
|
||||
sourcePos: Position; // 源节点连接位置(上下左右)
|
||||
targetPos: Position; // 目标节点连接位置(上下左右)
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算节点之间的交点坐标
|
||||
*
|
||||
* 功能说明:
|
||||
* 该函数用于计算两个节点之间连线与节点边界的精确交点位置。这在绘制流程图等图形时,
|
||||
* 确保连接线能够准确地从节点边界开始和结束,而不是从节点中心点开始。
|
||||
*
|
||||
* 算法原理:
|
||||
* 1. 首先获取两个节点的位置和尺寸信息
|
||||
* 2. 计算节点的中心点坐标
|
||||
* 3. 使用几何算法计算连线与节点矩形边界的交点
|
||||
* 4. 返回交点的精确坐标
|
||||
*
|
||||
* @param intersectionNode - 起始节点,需要计算交点的源节点
|
||||
* @param targetNode - 目标节点,与源节点相连的终点节点
|
||||
* @returns {IntersectionPoint} 返回交点坐标 {x, y}
|
||||
*/
|
||||
function getNodeIntersection(intersectionNode: InternalNode, targetNode: InternalNode): IntersectionPoint {
|
||||
// 获取起始节点的宽度和高度
|
||||
const { width: intersectionNodeWidth, height: intersectionNodeHeight } = intersectionNode.measured;
|
||||
// 获取两个节点的绝对位置信息
|
||||
const intersectionNodePosition = intersectionNode.internals.positionAbsolute;
|
||||
const targetPosition = targetNode.internals.positionAbsolute;
|
||||
|
||||
// 计算起始节点的半宽和半高,用于后续的坐标计算
|
||||
const w = intersectionNodeWidth / 2;
|
||||
const h = intersectionNodeHeight / 2;
|
||||
|
||||
// 计算两个节点的中心点坐标
|
||||
// (x2,y2)为起始节点的中心点
|
||||
const x2 = intersectionNodePosition.x + w;
|
||||
const y2 = intersectionNodePosition.y + h;
|
||||
// (x1,y1)为目标节点的中心点
|
||||
const x1 = targetPosition.x + targetNode.measured.width / 2;
|
||||
const y1 = targetPosition.y + targetNode.measured.height / 2;
|
||||
|
||||
// 使用数学公式计算交点坐标
|
||||
// 这里使用的是参数化方程,将节点边界视为矩形来计算交点
|
||||
const xx1 = (x1 - x2) / (2 * w) - (y1 - y2) / (2 * h);
|
||||
const yy1 = (x1 - x2) / (2 * w) + (y1 - y2) / (2 * h);
|
||||
// 通过标准化确保交点在节点边界上
|
||||
const a = 1 / (Math.abs(xx1) + Math.abs(yy1));
|
||||
const xx3 = a * xx1;
|
||||
const yy3 = a * yy1;
|
||||
// 计算最终的交点坐标
|
||||
const x = w * (xx3 + yy3) + x2;
|
||||
const y = h * (-xx3 + yy3) + y2;
|
||||
|
||||
return { x, y };
|
||||
}
|
||||
/**
|
||||
* 确定边缘连接点的位置(上下左右)
|
||||
*
|
||||
* 功能说明:
|
||||
* 根据节点和交点的位置关系,计算边缘线应该连接到节点的哪个位置(上/下/左/右)
|
||||
*
|
||||
* 实现原理:
|
||||
* 1. 获取节点的绝对定位信息和尺寸信息
|
||||
* 2. 将节点四条边界划分为不同区域
|
||||
* 3. 通过比较交点坐标与边界位置,确定最合适的连接点
|
||||
*
|
||||
* @param node - 需要确定连接位置的节点对象
|
||||
* 包含节点的位置信息(x,y)和尺寸信息(width,height)
|
||||
* @param intersectionPoint - 交点坐标对象
|
||||
* 包含交点的x,y坐标值
|
||||
* @returns Position - 返回枚举值,表示连接位置(Top/Right/Bottom/Left)
|
||||
*/
|
||||
function getEdgePosition(node: InternalNode, intersectionPoint: IntersectionPoint): Position {
|
||||
// 合并节点的绝对定位信息,确保获取准确的节点位置
|
||||
const n = { ...node.internals.positionAbsolute, ...node };
|
||||
|
||||
// 对坐标进行取整,避免浮点数计算误差
|
||||
const nx = Math.round(n.x); // 节点左边界x坐标
|
||||
const ny = Math.round(n.y); // 节点上边界y坐标
|
||||
const px = Math.round(intersectionPoint.x); // 交点x坐标
|
||||
const py = Math.round(intersectionPoint.y); // 交点y坐标
|
||||
|
||||
// 判断逻辑:通过比较交点与节点各边界的位置关系确定连接位置
|
||||
// 添加1px的容差值,增强判断的容错性
|
||||
if (px <= nx + 1) {
|
||||
return Position.Left; // 交点在节点左侧
|
||||
}
|
||||
if (px >= nx + n.measured.width - 1) {
|
||||
return Position.Right; // 交点在节点右侧
|
||||
}
|
||||
if (py <= ny + 1) {
|
||||
return Position.Top; // 交点在节点上方
|
||||
}
|
||||
if (py >= n.y + n.measured.height - 1) {
|
||||
return Position.Bottom; // 交点在节点下方
|
||||
}
|
||||
|
||||
// 若都不满足,默认返回顶部位置作为连接点
|
||||
return Position.Top;
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算两个节点之间边缘连接的所有必要参数
|
||||
* @param source - 源节点
|
||||
* @param target - 目标节点
|
||||
* @returns 返回包含边缘连接所需所有参数的对象
|
||||
*
|
||||
* 这是主要的导出函数,用于获取创建边缘连接线所需的所有参数
|
||||
*/
|
||||
export function getEdgeParams(source: InternalNode, target: InternalNode): EdgeParams {
|
||||
// 计算源节点和目标节点的交点
|
||||
const sourceIntersectionPoint = getNodeIntersection(source, target);
|
||||
const targetIntersectionPoint = getNodeIntersection(target, source);
|
||||
|
||||
// 确定连接点在各自节点上的位置
|
||||
const sourcePos = getEdgePosition(source, sourceIntersectionPoint);
|
||||
const targetPos = getEdgePosition(target, targetIntersectionPoint);
|
||||
|
||||
// 返回所有必要的参数
|
||||
return {
|
||||
sx: sourceIntersectionPoint.x,
|
||||
sy: sourceIntersectionPoint.y,
|
||||
tx: targetIntersectionPoint.x,
|
||||
ty: targetIntersectionPoint.y,
|
||||
sourcePos,
|
||||
targetPos,
|
||||
};
|
||||
}
|
||||
|
|
@ -1,115 +0,0 @@
|
|||
/* eslint-disable @typescript-eslint/no-explicit-any */
|
||||
|
||||
export const nextTick = async (frames = 1) => {
|
||||
const _nextTick = async (idx: number) => {
|
||||
return new Promise((resolve) => {
|
||||
requestAnimationFrame(() => resolve(idx));
|
||||
});
|
||||
};
|
||||
for (let i = 0; i < frames; i++) {
|
||||
await _nextTick(i);
|
||||
}
|
||||
};
|
||||
|
||||
export const firstOf = <T = any>(datas?: T[]) =>
|
||||
datas ? (datas.length < 1 ? undefined : datas[0]) : undefined;
|
||||
|
||||
export const lastOf = <T = any>(datas?: T[]) =>
|
||||
datas ? (datas.length < 1 ? undefined : datas[datas.length - 1]) : undefined;
|
||||
|
||||
export const randomInt = (min: number, max?: number) => {
|
||||
if (!max) {
|
||||
max = min;
|
||||
min = 0;
|
||||
}
|
||||
return Math.floor(Math.random() * (max - min + 1) + min);
|
||||
};
|
||||
|
||||
export const pickOne = <T = any>(datas: T[]) =>
|
||||
datas.length < 1 ? undefined : datas[randomInt(datas.length - 1)];
|
||||
|
||||
export const range = (start: number, end?: number) => {
|
||||
if (!end) {
|
||||
end = start;
|
||||
start = 0;
|
||||
}
|
||||
return Array.from({ length: end - start }, (_, index) => start + index);
|
||||
};
|
||||
|
||||
/**
|
||||
* clamp(-1,0,1)=0
|
||||
*/
|
||||
export function clamp(num: number, min: number, max: number): number {
|
||||
return num < max ? (num > min ? num : min) : max;
|
||||
}
|
||||
|
||||
export const toSet = <T = any>(datas: T[], byKey?: (e: T) => any) => {
|
||||
if (byKey) {
|
||||
const keys: Record<string, boolean> = {};
|
||||
const newDatas: T[] = [];
|
||||
datas.forEach((e) => {
|
||||
const key = jsonEncode({ key: byKey(e) }) as any;
|
||||
if (!keys[key]) {
|
||||
newDatas.push(e);
|
||||
keys[key] = true;
|
||||
}
|
||||
});
|
||||
return newDatas;
|
||||
}
|
||||
return Array.from(new Set(datas));
|
||||
};
|
||||
|
||||
export function jsonEncode(obj: any, prettier = false) {
|
||||
try {
|
||||
return prettier ? JSON.stringify(obj, undefined, 4) : JSON.stringify(obj);
|
||||
} catch (error) {
|
||||
return undefined;
|
||||
}
|
||||
}
|
||||
|
||||
export function jsonDecode(json: string | undefined) {
|
||||
if (json == undefined) return undefined;
|
||||
try {
|
||||
return JSON.parse(json!);
|
||||
} catch (error) {
|
||||
return undefined;
|
||||
}
|
||||
}
|
||||
|
||||
export function removeEmpty<T = any>(data: T): T {
|
||||
if (Array.isArray(data)) {
|
||||
return data.filter((e) => e != undefined) as any;
|
||||
}
|
||||
const res = {} as any;
|
||||
for (const key in data) {
|
||||
if (data[key] != undefined) {
|
||||
res[key] = data[key];
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
export const deepClone = <T>(obj: T): T => {
|
||||
if (obj === null || typeof obj !== "object") {
|
||||
return obj;
|
||||
}
|
||||
|
||||
if (Array.isArray(obj)) {
|
||||
const copy: any[] = [];
|
||||
obj.forEach((item, index) => {
|
||||
copy[index] = deepClone(item);
|
||||
});
|
||||
|
||||
return copy as unknown as T;
|
||||
}
|
||||
|
||||
const copy = {} as T;
|
||||
|
||||
for (const key in obj) {
|
||||
if (Object.prototype.hasOwnProperty.call(obj, key)) {
|
||||
(copy as any)[key] = deepClone((obj as any)[key]);
|
||||
}
|
||||
}
|
||||
|
||||
return copy;
|
||||
};
|
||||
|
|
@ -1,105 +0,0 @@
|
|||
// @ts-nocheck
|
||||
|
||||
// Source: https://github.com/AsyncBanana/microdiff
|
||||
|
||||
interface Difference {
|
||||
type: "CREATE" | "REMOVE" | "CHANGE";
|
||||
path: (string | number)[];
|
||||
value?: any;
|
||||
}
|
||||
interface Options {
|
||||
cyclesFix: boolean;
|
||||
}
|
||||
|
||||
const t = true;
|
||||
const richTypes = { Date: t, RegExp: t, String: t, Number: t };
|
||||
|
||||
export function isEqual(oldObj: any, newObj: any): boolean {
|
||||
return (
|
||||
diff(
|
||||
{
|
||||
obj: oldObj,
|
||||
},
|
||||
{ obj: newObj }
|
||||
).length < 1
|
||||
);
|
||||
}
|
||||
|
||||
export const isNotEqual = (oldObj: any, newObj: any) =>
|
||||
!isEqual(oldObj, newObj);
|
||||
|
||||
function diff(
|
||||
obj: Record<string, any> | any[],
|
||||
newObj: Record<string, any> | any[],
|
||||
options: Partial<Options> = { cyclesFix: true },
|
||||
_stack: Record<string, any>[] = []
|
||||
): Difference[] {
|
||||
const diffs: Difference[] = [];
|
||||
const isObjArray = Array.isArray(obj);
|
||||
|
||||
for (const key in obj) {
|
||||
const objKey = obj[key];
|
||||
const path = isObjArray ? Number(key) : key;
|
||||
if (!(key in newObj)) {
|
||||
diffs.push({
|
||||
type: "REMOVE",
|
||||
path: [path],
|
||||
});
|
||||
continue;
|
||||
}
|
||||
const newObjKey = newObj[key];
|
||||
const areObjects =
|
||||
typeof objKey === "object" && typeof newObjKey === "object";
|
||||
if (
|
||||
objKey &&
|
||||
newObjKey &&
|
||||
areObjects &&
|
||||
!richTypes[Object.getPrototypeOf(objKey).constructor.name] &&
|
||||
(options.cyclesFix ? !_stack.includes(objKey) : true)
|
||||
) {
|
||||
const nestedDiffs = diff(
|
||||
objKey,
|
||||
newObjKey,
|
||||
options,
|
||||
options.cyclesFix ? _stack.concat([objKey]) : []
|
||||
);
|
||||
// eslint-disable-next-line prefer-spread
|
||||
diffs.push.apply(
|
||||
diffs,
|
||||
nestedDiffs.map((difference) => {
|
||||
difference.path.unshift(path);
|
||||
|
||||
return difference;
|
||||
})
|
||||
);
|
||||
} else if (
|
||||
objKey !== newObjKey &&
|
||||
!(
|
||||
areObjects &&
|
||||
(Number.isNaN(objKey)
|
||||
? String(objKey) === String(newObjKey)
|
||||
: Number(objKey) === Number(newObjKey))
|
||||
)
|
||||
) {
|
||||
diffs.push({
|
||||
path: [path],
|
||||
type: "CHANGE",
|
||||
value: newObjKey,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const isNewObjArray = Array.isArray(newObj);
|
||||
|
||||
for (const key in newObj) {
|
||||
if (!(key in obj)) {
|
||||
diffs.push({
|
||||
type: "CREATE",
|
||||
path: [isNewObjArray ? Number(key) : key],
|
||||
value: newObj[key],
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return diffs;
|
||||
}
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
export function uuid(): string {
|
||||
const uuid = new Array(36);
|
||||
for (let i = 0; i < 36; i++) {
|
||||
uuid[i] = Math.floor(Math.random() * 16);
|
||||
}
|
||||
uuid[14] = 4;
|
||||
uuid[19] = uuid[19] &= ~(1 << 2);
|
||||
uuid[19] = uuid[19] |= 1 << 3;
|
||||
uuid[8] = uuid[13] = uuid[18] = uuid[23] = "-";
|
||||
return uuid.map((x) => x.toString(16)).join("");
|
||||
}
|
||||
|
|
@ -15,7 +15,7 @@ export default function PostResources({ post }: { post: PostDto }) {
|
|||
/\.(png|jpg|jpeg|gif|webp)$/i.test(url);
|
||||
|
||||
const sortedResources = post.resources.map(resource => {
|
||||
const original = `http://${env.SERVER_IP}/uploads/${resource.url}`
|
||||
const original = `http://${env.UOLOAD_IP}/uploads/${resource.url}`
|
||||
const isImg = isImage(resource.url)
|
||||
return {
|
||||
...resource,
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@ export const env: {
|
|||
APP_NAME: string;
|
||||
SERVER_IP: string;
|
||||
VERSION: string;
|
||||
UOLOAD_IP: string;
|
||||
} = {
|
||||
APP_NAME: import.meta.env.PROD
|
||||
? (window as any).env.VITE_APP_APP_NAME
|
||||
|
|
@ -9,9 +10,12 @@ export const env: {
|
|||
SERVER_IP: import.meta.env.PROD
|
||||
? (window as any).env.VITE_APP_SERVER_IP
|
||||
: import.meta.env.VITE_APP_SERVER_IP,
|
||||
UOLOAD_IP: import.meta.env.PROD
|
||||
? (window as any).env.VITE_APP_UOLOAD_IP
|
||||
: import.meta.env.VITE_APP_UOLOAD_IP,
|
||||
VERSION: import.meta.env.PROD
|
||||
? (window as any).env.VITE_APP_VERSION
|
||||
: import.meta.env.VITE_APP_VERSION,
|
||||
};
|
||||
|
||||
console.log(env)
|
||||
console.log(env);
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ export function useTusUpload() {
|
|||
if (uploadIndex === -1 || uploadIndex + 4 >= parts.length) {
|
||||
throw new Error("Invalid upload URL format");
|
||||
}
|
||||
const resUrl = `http://${env.SERVER_IP}/uploads/${parts.slice(uploadIndex + 1, uploadIndex + 6).join("/")}`;
|
||||
const resUrl = `http://${env.UOLOAD_IP}/uploads/${parts.slice(uploadIndex + 1, uploadIndex + 6).join("/")}`;
|
||||
|
||||
return resUrl;
|
||||
};
|
||||
|
|
|
|||
Loading…
Reference in New Issue